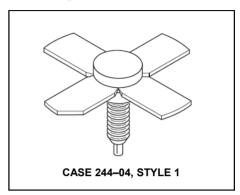


Rev. V1


Designed primarily for wideband large—signal driver and predriver amplifier stages in the 200–500 MHz frequency range.

- Guaranteed performance at 400 MHz, 28 V
 Output power = 20 W
 Power gain = 10 dB min.
 Efficiency = 50% min.
- 100% tested for load mismatch at all phase angles with 30:1 VSWR
- Gold metallization system for high reliability
- Computer-controlled wirebonding gives consistent input impedance

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	V _{CEO}	33	Vdc
Collector-Base Voltage	V _{CBO}	60	Vdc
Emitter–Base Voltage	V _{EBO}	4.0	Vdc
Collector Current — Continuous — Peak	I _C	2.2 3.0	Adc
Total Device Dissipation @ T _C = 25°C (1) Derate above 25°C	P _D	55 310	Watts mW/°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

Product Image

THERMAL CHARACTERISTICS

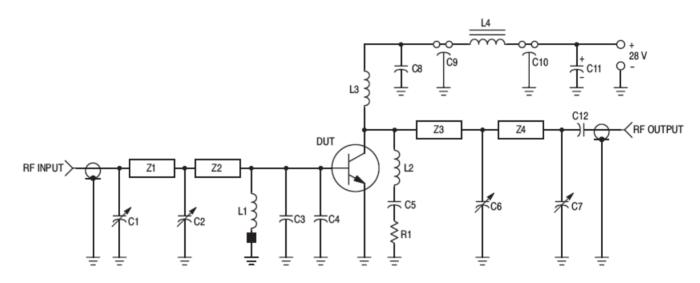
Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	3.2	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	<u> </u>	•	•	•	•
Collector–Emitter Breakdown Voltage (I _C = 20 mAdc, I _B = 0)	V _(BR) CEO	33	_	_	Vdc
Collector–Emitter Breakdown Voltage (I _C = 20 mAdc, V _{BE} = 0)	V _{(BR)CES}	60	_	_	Vdc
Collector–Base Breakdown Voltage (I _C = 20 mAdc, I _E = 0)	V _(BR) CBO	60	_	_	Vdc
Emitter–Base Breakdown Voltage (I _E = 2.0 mAdc, I _C = 0)	V _{(BR)EBO}	4.0	_	_	Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0)	I _{CBO}	_	_	2.0	mAdc
ON CHARACTERISTICS	•	•	+	•	•
DC Current Gain (I _C = 1.0 Adc, V _{CE} = 5.0 Vdc)	h _{FE}	20	_	80	_

NOTE: (continued)

1. This device is designed for RF operation. The total device dissipation rating applies only when the device is operated as an RF amplifier.


1

Rev. V1

ELECTRICAL CHARACTERISTICS — continued (T_C = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
DYNAMIC CHARACTERISTICS	•	•		•	
Output Capacitance (V _{CB} = 28 Vdc, I _E = 0, f = 1.0 MHz)	C _{ob}	_	20	24	pF
FUNCTIONAL TESTS (Figure 1)	•			•	
Common–Emitter Amplifier Power Gain (V _{CC} = 28 Vdc, P _{out} = 20 W, f = 400 MHz)	G _{PE}	10	11	_	dB
Collector Efficiency (V _{CC} = 28 Vdc, P _{out} = 20 W, f = 400 MHz)	η	50	60	_	%
Load Mismatch (V _{CC} = 28 Vdc, P _{out} = 20 W, f = 400 MHz, VSWR = 30:1 all phase angles)	Ψ	No Degradation in Output Power			

C1, C2, C6 — 1.0-20 pF Johanson Trimmer (JMC 5501)

C3, C4 - 47 pF ATC Chip Capacitor

C5, C8 — 0.1 µF Erie Redcap

C7 — 0.5-10 pF Johanson Trimmer (JMC 5201)

C9, C10 - 680 pF Feedthru

C11 - 1.0 µF 50 Volt Tantalum

C12 - 0.018 µF Vitramon Chip Capacitor

L1 — 0.33 μH Molded Choke with Ferroxcube Bead (Ferroxcube 56–590–65/4B) on Ground End L2 - 6 Turns #20 Enamel, 1/4" ID, Closewound

L3 - 4 Turns #20 Enamel, 1/8" ID, Closewound

L4 — Ferroxcube VK200-19/4B

R1 — 5.1 Ω 1/4 Watt

Z1 - Microstrip 0.1" W x 1.35" L

Z2 - Microstrip 0.1" W x 0.55" L

Z3 — Microstrip 0.1" W x 0.8" L

Z4 — Microstrip 0.1" W x 1.75" L

Board — Glass Teflon ε_r = 2.56, t = 0.062"

Input/Output Connectors — Type N

Figure 1. 400 MHz Test Circuit Schematic

Rev. V1

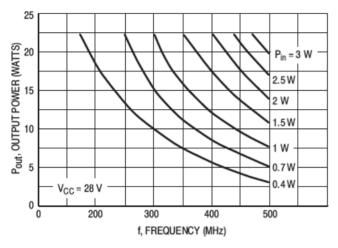
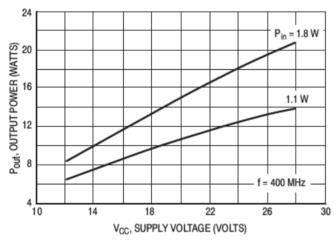


Figure 2. Output Power versus Frequency

Figure 3. Output Power versus Input Power



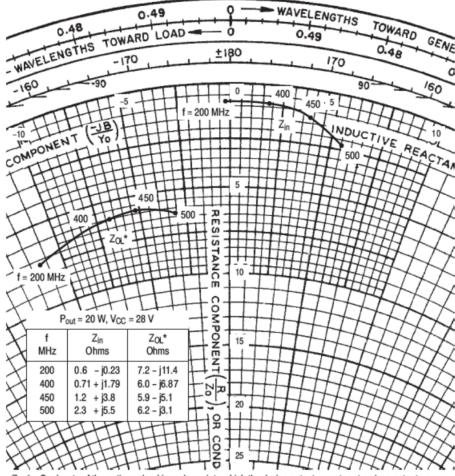


Figure 4. Output Power versus Supply Voltage

Figure 5. Power Gain versus Frequency

Rev. V1

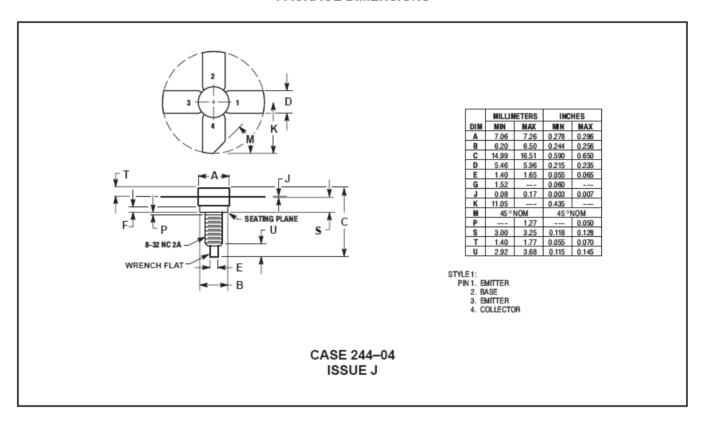

Z_{OL}* = Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.

Figure 6. Series Equivalent Impedance

Rev. V1

PACKAGE DIMENSIONS

MRF323

The RF Line NPN Silicon Power Transistor 20W, 400MHz, 28V

Rev. V1

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.