4-Mbit (512K words × 8 bit) Static RAM with Error-Correcting Code (ECC) #### **Features** ■ High speed: 45 ns/55 ns ■ Ultra-low standby power Typical standby current: 3.5 μA Maximum standby current: 8.7 μA ■ Embedded ECC for single-bit error correction^[1] ■ Wide voltage range: 1.65 V to 2.2 V, 2.2 V to 3.6 V, 4.5 V to 5.5 V ■ 1.0-V data retention ■ TTL-compatible inputs and outputs ■ Pb-free 32-pin SOIC and 32-pin TSOP II packages #### **Functional Description** CY62148G is a high-performance CMOS low-power (MoBL) SRAM device with embedded $ECC^{[1]}$. This device is offered multiple pin configurations. Device is accessed by asserting the chip enable (\overline{CE}) input LOW. Data writes are performed by asserting the Write Enable (\overline{WE}) input LOW, while providing the data on I/O₀ through I/O₇ and address on A₀ through A₁₈ pins. Data reads are performed by asserting the Output Enable (\overline{OE}) input and providing the required address on the address lines. Read data is accessible on the I/O lines (I/O₀ through I/O₇). All I/Os (I/O $_0$ through I/O $_{\overline{Z}}$) are placed in a HI-Z state when the device is deselected (CE HIGH or control signal \overline{OE} is de-asserted). See the Truth Table – CY62148G on page 12 for a complete description of read and write modes. The logic block diagrams are on page 2. # Logic Block Diagram - CY62148G #### Note 1. This device does not support automatic write-back on error detection. # **Contents** | Pin Configurations | 3 | |--------------------------------|---| | Product Portfolio | 3 | | Maximum Ratings | | | Operating Range | | | DC Electrical Characteristics | 4 | | Capacitance | 6 | | Thermal Resistance | 6 | | AC Test Loads and Waveforms | 6 | | Data Retention Characteristics | 7 | | Data Retention Waveform | | | AC Switching Characteristics | | | Switching Waveforms | | | Truth Table - CY62148G | | | Ordering information | | |---|----| | Ordering Code Definitions | 13 | | Package Diagrams | 14 | | Acronyms | 15 | | Document Conventions | 15 | | Units of Measure | 15 | | Document History Page | 16 | | Sales, Solutions, and Legal Information | 17 | | Worldwide Sales and Design Support | 17 | | Products | 17 | | PSoC®Solutions | 17 | | Cypress Developer Community | 17 | | Technical Support | | # **Pin Configurations** Figure 1. 32-pin SOIC/TSOP II pinout #### **Product Portfolio** | | | | | Power Dissipation | | | | | |------------|------------|---------------------------|-------------|--|-----|---|-----|--| | Product | Range | V _{CC} Range (V) | Speed (ns) | Operating I _{CC} , (mA) $f = f_{max}$ | | Standby, I _{SB2} (μ A) | | | | Troduct | Range | ACC Ivalide (A) | Opeea (IIS) | | | | | | | | | | | Typ ^[2] | Max | Typ ^[2] | Max | | | CY62148G18 | Industrial | 1.65 V-2.2 V | 55 | _ | 20 | _ | 10 | | | CY62148G30 | | 2.2 V-3.6 V | 45 | _ | 20 | 3.5 | 8.7 | | | CY62148G | | 4.5 V–5.5 V | | | | | | | #### Note Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = 1.8 V (for a V_{CC} range of 1.65 V–2.2 V), V_{CC} = 3 V (for V_{CC} range of 2.2 V–3.6 V), and V_{CC} = 5 V (for V_{CC} range of 4.5 V–5.5 V), T_A = 25 °C. # **Maximum Ratings** Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested. Storage temperature-65 °C to + 150 °C Ambient temperature with power applied –55 °C to + 125 °C Supply voltage to ground potential^[3]-0.5 V to Vcc + 0.5 V DC voltage applied to outputs in HI-Z state^[3]......–0.5 V to V_{CC} + 0.5 V | DC input voltage $^{[3]}$ | |--| | Output current into outputs (in low state) 20 mA | | Static discharge voltage (MIL-STD-883, Method 3015)>2001 V | | Latch-up current>140 mA | # **Operating Range** | Grade | Ambient Temperature | V cc ^[4] | |------------|---------------------|---| | Industrial | –40 °C to +85 °C | 1.65 V to 2.2 V,
2.2 V to 3.6 V,
4.5 V to 5.5 V | ### **DC Electrical Characteristics** Over the operating range of -40 °C to 85 °C | Davamatav | Description | | Took Condition | _ | 45 ו | ns / 5 | 5 ns | 11:4 | |-----------------|---------------------------|-----------------|---|--------------------------|----------------------|--------|----------------------|------| | Parameter | Desc | ription | Test Conditions | | Min | Тур | Max | Unit | | V _{OH} | Output HIGH | 1.65 V to 2.2 V | V_{CC} = Min, I_{OH} = -0.1 mA | | 1.4 | - | _ | V | | | voltage | 2.2 V to 2.7 V | V_{CC} = Min, I_{OH} = -0.1 mA | | 2 | - | _ | | | | | 2.7 V to 3.6 V | V_{CC} = Min, I_{OH} = -1.0 mA | | 2.2 | _ | _ | | | | | 4.5 V to 5.5 V | V_{CC} = Min, I_{OH} = -1.0 mA | | 2.4 | _ | _ | | | | | 4.5 V to 5.5 V | V_{CC} = Min, I_{OH} = -0.1 mA | | $V_{CC} - 0.5^{[5]}$ | - | _ | | | V _{OL} | Output LOW | 1.65 V to 2.2 V | V _{CC} = Min, I _{OL} = 0.1 mA | | _ | 1 | 0.2 | V | | | voltage | 2.2 V to 2.7 V | V _{CC} = Min, I _{OL} = 0.1 mA | | _ | 1 | 0.4 | | | | | 2.7 V to 3.6 V | V _{CC} = Min, I _{OL} = 2.1 mA | | _ | 1 | 0.4 | | | | | 4.5 V to 5.5 V | V _{CC} = Min, I _{OL} = 2.1 mA | | _ | 1 | 0.4 | | | V _{IH} | Input HIGH | 1.65 V to 2.2 V | _ | | 1.4 | 1 | $V_{CC} + 0.2^{[3]}$ | V | | | voltage | 2.2 V to 2.7 V | _ | | 1.8 | 1 | $V_{CC} + 0.3^{[3]}$ | | | | | 2.7 V to 3.6 V | _ | | 2 | 1 | $V_{CC} + 0.3^{[3]}$ | | | | | 4.5 V to 5.5 V | _ | | 2.2 | 1 | $V_{CC} + 0.5^{[3]}$ | | | V_{IL} | Input LOW | 1.65 V to 2.2 V | _ | | $-0.2^{[3]}$ | - | 0.4 | V | | | voltage | 2.2 V to 2.7 V | _ | | -0.3 ^[3] | - | 0.6 | | | | | 2.7 V to 3.6 V | _ | | -0.3 ^[3] | - | 0.8 | | | | | 4.5 V to 5.5 V | _ | | -0.5 ^[3] | - | 0.8 | | | I _{IX} | Input leakage of | urrent | $GND \le V_{IN} \le V_{CC}$ | | – 1 | - | +1 | μΑ | | I _{OZ} | Output leakage | current | $GND \le V_{OUT} \le V_{CC}$, Output disabled | | -1 | - | +1 | μΑ | | I _{CC} | V _{CC} operating | supply current | Max V _{CC} , I _{OUT} = 0 mA,
CMOS levels | f = 22.22 MHz
(45 ns) | _ | - | 20 | mA | | | | | | f = 18.18 MHz
(55 ns) | _ | - | 20 | mA | | | | | | f = 1 MHz | _ | _ | 6 | mA | - V_{IL(min)} = -2.0 V and V_{IH(max)} = V_{CC} + 2 V for pulse durations of less than 20 ns. Full Device AC operation assumes a 100 μs ramp time from 0 to V_{CC(min)} and 200 μs wait time after Vcc stabilization. This parameter is guaranteed by design and not tested. # DC Electrical Characteristics (continued) Over the operating range of –40 $^{\circ}\text{C}$ to 85 $^{\circ}\text{C}$ | D | December 6 and | To ad O and diding | | 45 | ns / 55 | ns | 11!4 | |-----------------------------------|--|--|----------------------|----|---------|-----|--------| | Parameter | Description | lest Condition | Test Conditions | | Тур | Max | - Unit | | I _{SB1} ^[6] | Automatic power down
current – CMOS inputs;
V _{CC} = 2.2 V to 3.6 V and
4.5 V to 5.5 V | $\overline{\text{CE}}_1 \ge \text{V}_{\text{CC}} - 0.2 \text{ V or CE}_2 \le 0.2 \text{ V},$ $\text{V}_{\text{IN}} \ge \text{V}_{\text{CC}} - 0.2 \text{ V or V}_{\text{IN}} \le 0.2 \text{ V},$ | | _ | - | 8.7 | μА | | | Automatic power down current – CMOS inputs V _{CC} = 1.65 V to 2.2 V | $f = f_{max}$ (address and data only),
$f = 0$ (\overline{OE} , and \overline{WE}), Max V _{CC} | | _ | - | 10 | | | I _{SB2} ^[6] | Automatic power down | | 25 °C ^[7] | _ | 3.5 | 3.7 | μΑ | | | current – CMOS inputs
V _{CC} = 2.2 V to 3.6 V and | $\overline{CE}_1 \ge V_{CC} - 0.2 \text{ V or}$
$CE_2 \le 0.2 \text{ V},$ | 40 °C ^[7] | _ | _ | 4.8 | | | | 4.5 V to 5.5 V | OL ₂ <u>S</u> 0.2 V, | 70 °C ^[7] | _ | _ | 7 | | | | 4.5 V to 5.5 V | $V_{IN} \ge V_{CC} - 0.2 \text{ V or}$
$V_{IN} \le 0.2 \text{ V,}$
$f = 0, \text{ Max } V_{CC}$ | 85 °C | _ | - | 8.7 | | | | Automatic power down | | 25 °C ^[7] | _ | 3.5 | 4.3 | 1 | | | current – CMOS inputs | $CE_1 \ge V_{CC} - 0.2 \text{ V or}$ | 40 °C ^[7] | _ | 1 - 1 | 5 | 1 | | V _{CC} = 1.65 V to 2.2 V | CE ₂ ≤ 0.2 V, | 70 °C ^[7] | _ | _ | 7.5 | = | | | | | $V_{IN} \ge V_{CC} - 0.2 \text{ V or}$
$V_{IN} \le 0.2 \text{ V},$ | 85 °C | _ | - | 10 | | | | | f = 0, Max V _{CC} | | | | | | ^{Notes 6. Chip enables (CE must be tied to CMOS levels to meet the I_{SB1} / I_{SB2} / I_{CCDR} spec. Other inputs can be left floating. 7. The I_{SB2} limits at 25 °C, 40 °C, 70 °C, and typical limit at 85 °C are guaranteed by design and not 100% tested.} # Capacitance | Parameter [8] | Description | Test Conditions | Max | Unit | |------------------|--------------------|---|-----|------| | C _{IN} | Input capacitance | $T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz}, V_{CC} = V_{CC(typ)}$ | 10 | pF | | C _{OUT} | Output capacitance | | 10 | pF | ## **Thermal Resistance** | Parameter [8] | Description | Test Conditions | 32-pin SOIC | 32-pin TSOP II | Unit | |-------------------|---------------------------------------|---|-------------|----------------|------| | $\Theta_{\sf JA}$ | | Still air, soldered on a 3 × 4.5 inch, four-layer printed circuit board | 51.79 | 79.03 | °C/W | | $\Theta_{\sf JC}$ | Thermal resistance (junction to case) | | 25.12 | 17.44 | °C/W | ## **AC Test Loads and Waveforms** Figure 2. AC Test Loads and Waveforms [9] | Parameters | 1.8 V | 2.5 V | 3.0 V | 5.0 V | Unit | |-----------------|-------|-------|-------|-------|------| | R1 | 13500 | 16667 | 1103 | 1800 | Ω | | R2 | 10800 | 15385 | 1554 | 990 | Ω | | R _{TH} | 6000 | 8000 | 645 | 639 | Ω | | V _{TH} | 0.80 | 1.20 | 1.75 | 1.77 | V | ^{8.} Tested initially and after any design or process changes that may affect these parameters. 9. Full-device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} ≥ 100 μs or stable at V_{CC(min)} ≥ 100 μs. #### **Data Retention Characteristics** Over the Operating range | Parameter | Description | Conditions | Min | Typ [10] | Max | Unit | |---------------------------------------|--------------------------------------|--|-------|-----------------|-----|------| | V_{DR} | V _{CC} for data retention | | 1 | - | - | V | | I _{CCDR} ^[11, 12] | Data retention current | V _{CC} = 1.2 V, | _ | _ | 13 | μΑ | | | | $\overline{\text{CE}}_1 \ge \text{V}_{\text{CC}} - 0.2 \text{ V or } \text{CE}_2 \le 0.2 \text{ V},$ | | | | | | | | $V_{IN} \ge V_{CC} - 0.2 \text{ V or } V_{IN} \le 0.2 \text{ V}$ | | | | | | t _{CDR} ^[13, 14] | Chip deselect to data retention time | | 0 | _ | _ | ns | | t _R ^[14] | Operation recovery time | | 45/55 | _ | _ | ns | #### **Data Retention Waveform** Figure 3. Data Retention Waveform ^{10.} Typical values are included only for reference and are not guaranteed or tested. Typical values are measured at V_{CC} = 1.8 V (for V_{CC} range of 1.65 V–2.2 V), V_{CC} = 3 V (for V_{CC} range of 2.2 V–3.6 V), and V_{CC} = 5 V (for V_{CC} range of 4.5 V–5.5 V), T_A = 25 °C. ^{11.} Chip enables $\overline{\text{CE}}$ must be tied to CMOS levels to meet the $I_{SB1}/I_{SB2}/I_{CCDR}$ spec. Other inputs can be left floating. ^{12.} I_{CCDR} is guaranteed only after device is first powered up to $V_{CC(min)}$ and then brought down to V_{DR} . ^{13.} These parameters are guaranteed by design. ^{14.} Full-device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min)} \ge 100~\mu s$ or stable at $V_{CC(min)} \ge 100~\mu s$. # **AC Switching Characteristics** | Parameter [15, 16] | Description | 45 | ns | 55 | 11!4 | | |---------------------|--|----------|-----|-----|------|------| | Parameter [10, 10] | Description | Min | Max | Min | Max | Unit | | Read Cycle | | <u>.</u> | | | | | | t _{RC} | Read cycle time | 45 | _ | 55 | _ | ns | | t _{AA} | Address to data valid | _ | 45 | - | 55 | ns | | t _{OHA} | Data hold from address change | 10 | _ | 10 | _ | ns | | t _{ACE} | CE LOW to data valid | - | 45 | _ | 55 | ns | | t _{DOE} | OE LOW to data valid | - | 22 | _ | 25 | ns | | t _{LZOE} | OE LOW to Low impedance ^[17] | 5 | _ | 5 | _ | ns | | t _{HZOE} | OE HIGH to HI-Z ^[17, 18] | _ | 18 | _ | 18 | ns | | t _{LZCE} | CE LOW to Low impedance ^[17] | 10 | _ | 10 | _ | ns | | t _{HZCE} | CE HIGH to HI-Z ^[17, 18] | _ | 18 | _ | 18 | ns | | t _{PU} | CE LOW to power-up | 0 | _ | 0 | _ | ns | | t _{PD} | CE HIGH to power-down | - | 45 | _ | 55 | ns | | Write Cycle [19, 20 |)] | · | | | | | | t _{WC} | Write cycle time | 45 | _ | 55 | _ | ns | | t _{SCE} | CE LOW to write end | 35 | _ | 45 | _ | ns | | t _{AW} | Address setup to write end | 35 | _ | 45 | _ | ns | | t _{HA} | Address hold from write end | 0 | _ | 0 | _ | ns | | t _{SA} | Address setup to write start | 0 | _ | 0 | _ | ns | | t _{PWE} | WE pulse width | 35 | _ | 40 | _ | ns | | t _{SD} | Data setup to write end | 25 | _ | 25 | _ | ns | | t _{HD} | Data hold from write end | 0 | _ | 0 | _ | ns | | t _{HZWE} | WE LOW to HI-Z ^[17, 18] | _ | 18 | - | 20 | ns | | t _{LZWE} | WE HIGH to Low impedance ^[17] | 10 | _ | 10 | _ | ns | Notes 15. Test conditions assume a signal transition time (rise/fall) of 3 ns or less, timing reference levels of 1.5 V (for V_{CC} ≥ 3 V) and V_{CC}/2 (for V_{CC} < 3 V), and input pulse levels of 0 to 3 V (for V_{CC} ≥ 3 V) and 0 to V_{CC} (for V_{CC} < 3 V). Test conditions for the read cycle use output loading shown in AC Test Loads and Waveforms section, unless specified otherwise. 16. These parameters are guaranteed by design. 17. At any temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZCE}, and t_{HZWE} for any device. 18. t_{HZOE}, t_{HZCE} and t_{HZWE} transitions are measured when the outputs enter a high-impedance state. 19. The internal write time of the memory is defined by the overlap of WE = V_{IL}, CE = V_{IL},All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write. 20. The minimum pulse width in Write Cycle No. 3 (WE Controlled, OE LOW) should be equal to sum of t_{SD} and t_{HZWE}. # **Switching Waveforms** Figure 4. Read Cycle No. 1 (Address Transition Controlled) [21, 22] Figure 5. Read Cycle No. 2 (OE Controlled) [22, 23] - 21. The device is continuously selected. $\overline{OE} = V_{IL}$, $\overline{CE} = V_{IL}$. - 22. WE is HIGH for Read cycle. - 23. Address valid prior to or coincident with $\overline{\text{CE}}$ LOW transition. # Switching Waveforms (continued) ^{Notes 24. WE is HIGH for Read cycle. 25. The internal write time of the memory is defined by the overlap of WE = V_{IL}, CE = V_{IL}, All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write. 26. Data I/O is in a HI-Z state if CE = V_{IH}, or OE = V_{IH}.} # Switching Waveforms (continued) Figure 7. Write Cycle No. 2 (CE Controlled) [27, 28] Figure 8. Write Cycle No. 3 (WE Controlled, OE LOW) [27, 28, 29] ^{27.} The internal write time of the memory is defined by the overlap of WE = V_{IL}, CE = V_{IL}, All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write. 28. Data I/O is in HI-Z state if CE = V_{IH}, or OE = V_{IH}. ^{29.} The minimum write pulse width for Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW) should be sum of t_{HZWE} and t_{SD} . ## Truth Table - CY62148G | CE | WE | OE | Inputs/Outputs | Mode | Power | Configuration | |----|-------------------|-------------------|--|---------------------|----------------------------|---------------| | Н | X ^[30] | X ^[30] | HI-Z | Deselect/Power-down | Standby (I _{SB}) | 512 K × 8 | | L | Н | L | Data Out (I/O ₀ –I/O ₇) | Read | Active (I _{CC}) | 512 K × 8 | | L | Н | Н | HI-Z | Output disabled | Active (I _{CC}) | 512 K × 8 | | L | L | X ^[30] | Data In (I/O ₀ –I/O ₇) | Write | Active (I _{CC}) | 512 K × 8 | Note 30. The 'X' (Don't care) state for the chip enables refer to the logic state (either HIGH or LOW). Intermediate voltage levels on these pins is not permitted. # **Ordering Information** | Speed (ns) | Voltage
Range | Ordering Code | Package
Diagram | Package Type | Operating
Range | |------------|------------------|--------------------|------------------------------|---------------------------------------|--------------------| | 45 | 2.2 V-3.6 V | CY62148G30-45SXI | 51-85081 | 32-pin SOIC (450 Mils) | Industrial | | | | CY62148G30-45SXIT | 51-85081 | 32-pin SOIC (450 Mils), Tape and Reel | | | | | CY62148G30-45ZSXI | ZSXI 51-85095 32-pin TSOP II | | | | | | CY62148G30-45ZSXIT | 51-85095 | 32-pin TSOP II, Tape and Reel | | | | 4.5 V–5.5 V | CY62148G-45SXI | 51-85081 | 32-pin SOIC (450 Mils) | | | | | CY62148G-45SXIT | 51-85081 | 32-pin SOIC (450 Mils), Tape and Reel | | | | | CY62148G-45ZSXI | 51-85095 | 32-pin TSOP II | | | | | CY62148G-45ZSXIT | 51-85095 | 32-pin TSOP II, Tape and Reel | | | 55 | 1.65 V-2.2 V | CY62148G18-55ZSXI | 51-85095 | 32-pin TSOP II | | | | | CY62148G18-55ZSXIT | 51-85095 | 32-pin TSOP II, Tape and Reel | | #### **Ordering Code Definitions** ## **Package Diagrams** Figure 9. 32-pin SOIC (450 Mils) S32.45/SZ32.45 Package Outline, 51-85081 Figure 10. 32-pin TSOP II (20.95 × 11.76 × 1.0 mm) ZS32 Package Outline, 51-85095 # **Acronyms** | Acronym | Description | |---------|---| | CE | chip enable | | CMOS | complementary metal oxide semiconductor | | I/O | input/output | | OE | output enable | | SRAM | static random access memory | | TSOP | thin small outline package | | VFBGA | very fine-pitch ball grid array | | WE | write enable | # **Document Conventions** ## **Units of Measure** | Symbol | Unit of Measure | | |--------|-----------------|--| | °C | degree Celsius | | | MHz | megahertz | | | μΑ | microamperes | | | μs | microseconds | | | mA | milliamperes | | | mm | millimeters | | | ns | nanoseconds | | | Ω | ohms | | | % | percent | | | pF | picofarads | | | V | volts | | | W | watts | | # **Document History Page** | | Document Title: CY62148G MoBL [®] , 4-Mbit (512K words × 8 bit) Static RAM with Error-Correcting Code (ECC)
Document Number: 001-95415 | | | | |------|--|--------------------|--------------------|---| | Rev. | ECN No. | Orig. of
Change | Submission
Date | Description of Change | | *B | 5054381 | NILE | 12/17/2015 | Changed status from Preliminary to Final. | | *C | 5082528 | NILE | 01/12/2016 | Updated Ordering Information: Updated part numbers. Completing Sunset Review. | | *D | 5432526 | NILE | 09/10/2016 | Updated Maximum Ratings: Updated Note 3 (Replaced "2 ns" with "20 ns"). Updated DC Electrical Characteristics: Changed minimum value of V _{IH} parameter from 2.0 V to 1.8 V corresponding to Operating Range "2.2 V to 2.7 V". Updated Ordering Information: Updated part numbers. Updated to new template. | # Sales, Solutions, and Legal Information #### **Worldwide Sales and Design Support** Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. #### **Products** ARM® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot Lighting & Power Control cypress.com/powerpsoc Memory cypress.com/memory **PSoC** cypress.com/psoc Touch Sensing cypress.com/touch **USB Controllers** cypress.com/usb Wireless/RF cypress.com/wireless #### PSoC[®]Solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP #### **Cypress Developer Community** Forums | Projects | Video | Blogs | Training | Components #### **Technical Support** cypress.com/support © Cypress Semiconductor Corporation, 2015-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through reselfers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited. TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products. Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners. Document Number: 001-95415 Rev. *D Revised September 10, 2016