
eGaN® FET DATASHEET EPC2025

EPC2025 – Enhancement Mode Power Transistor

 V_{DSS} , 300 V $R_{\text{DS(on)}}$, $\,$ 120 $m\Omega$ I_D , 6.3 A

Gallium Nitride is grown on Silicon Wafers and processed using standard CMOS equipment leveraging the infrastructure that has been developed over the last 55 years. GaN's exceptionally high electron mobility allows very low R_{DS(on)}, while its lateral device structure and majority carrier diode provide exceptionally low $Q_{\scriptscriptstyle G}$ and zero $Q_{\scriptscriptstyle RR}$. The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

Maximum Ratings				
$V_{ extsf{DS}}$	V _{DS} Drain-to-Source Voltage (Continuous)			
,	Continuous (T _A = 25°C, R _{OJA} = 13°C/W)	6.3	А	
I _D	Pulsed (25°C, T _{PULSE} = 300 μs)	20		
V	Gate-to-Source Voltage	6	V	
V _{GS}	Gate-to-Source Voltage	-4		
T,	Operating Temperature -40 to 150		°C	
T _{STG}	Storage Temperature	-40 to 150		

EPC2025 eGaN® FETs are supplied only in passivated die form with solder bumps Die Size: 1.95 mm x 1.95 mm

Applications

- Ultra High Frequency DC-DC conversion
- Medical
- Solar
- LED Lighting

Benefits

- Ultra High Efficiency
- Ultra Low Switching and Conduction Losses
- Zero Q_{RR}
- · Ultra small footprint

www.epc-co.com/epc/Products/eGaNFETs/EPC2025.aspx

	Static Characteristics ($T_J = 25^{\circ}$ C unless otherwise stated)					
	PARAMETER	TEST CONDITIONS MIN		TYP	MAX	UNIT
BV _{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V, } I_D = 120 \mu\text{A}$	300			V
I _{DSS}	Drain Source Leakage	$V_{DS} = 240 \text{ V}, V_{GS} = 0 \text{ V}$		20	100	μΑ
	Gate-to-Source Forward Leakage	$V_{GS} = 5 V$		0.1	2	mA
I _{GSS}	Gate-to-Source Reverse Leakage	$V_{GS} = -4 V$		20	100	μΑ
$V_{GS(TH)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	0.8	1.4	2.5	V
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V, } I_{D} = 3 \text{ A}$		90	120	mΩ
V _{SD}	Source-Drain Forward Voltage	$I_S = 0.5 \text{ A}, V_{GS} = 0 \text{ V}$		2.5		V

All measurements were done with substrate shorted to source.

Thermal Characteristics				
		TYP	UNIT	
$R_{\Theta JC}$	Thermal Resistance, Junction to Case	1.6	°C/W	
$R_{\Theta JB}$	Thermal Resistance, Junction to Board	9.5	°C/W	
R _{⊝JA}	Thermal Resistance, Junction to Ambient (Note 1)	64	°C/W	

Note 1: R_{PIA} is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See http://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details. eGaN® FET DATASHEET EPC2025

	Dynamic Characteristics (T _J = 25°C unless otherwise stated)					
	PARAMETER	TEST CONDITIONS MIN		ТҮР	MAX	UNIT
C _{ISS}	Input Capacitance			200	240	
C_{RSS}	Reverse Transfer Capacitance	$V_{DS} = 240 \text{ V}, V_{GS} = 0 \text{ V}$		0.1		
C _{oss}	Output Capacitance			46	70	_
C _{OSS(ER)}	Effective Output Capacitance Energy Related (Note 2)			64		pF
C _{OSS(TR)}	Effective Output Capacitance Energy Related (Note 3)	$V_{DS} = 0$ to 240 V, $V_{GS} = 0$ V		93		
R _G	Gate Resistance			0.3		Ω
Q_{G}	Total Gate Charge	$V_{DS} = 240 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 3 \text{ A}$		1.8	2.3	
Q_{GS}	Gate-to-Source Charge			0.72		
Q_{GD}	Gate-to-Drain Charge	$V_{DS} = 240 \text{ V, } I_{D} = 3 \text{ A}$		0.32	0.54	
Q _{G(TH)}	Gate Charge at Threshold			0.54		nC
Qoss	Output Charge	$V_{DS} = 240 \text{ V}, V_{GS} = 0 \text{ V}$		22	33	
Q_{RR}	Source-Drain Recovery Charge			0		

Note 2: $C_{OSS(IRI)}$ is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 80% BV_{DSS}. Note 3: $C_{OSS(IRI)}$ is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 80% BV_{DSS}.

Figure 1: Typical Output Characteristics at 25°C

Figure 3: R_{DS(on)} vs V_{GS} for Various Drain Currents

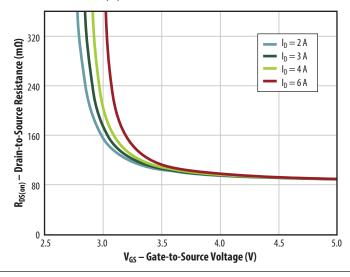


Figure 2: Transfer Characteristics

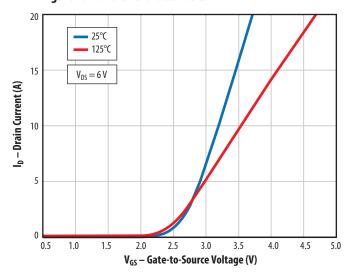
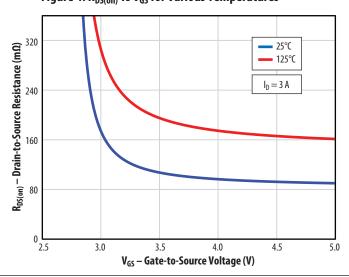



Figure 4: R_{DS(on)} vs V_{GS} for Various Temperatures

eGaN® FET DATASHEET EPC2025

Figure 5a: Capacitance (Linear Scale)

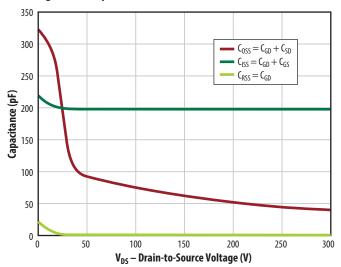


Figure 5b: Capacitance (Log Scale)

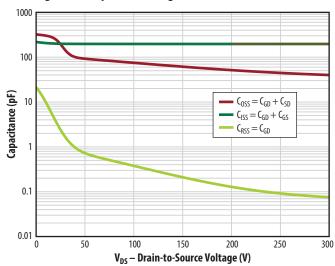


Figure 6: Gate Charge

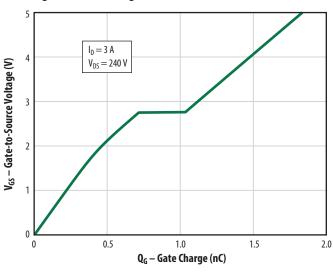


Figure 7: Reverse Drain-Source Characteristics

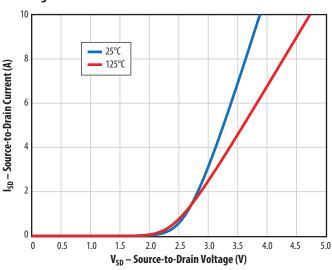
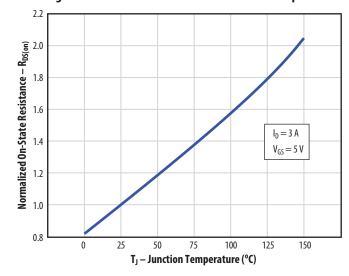
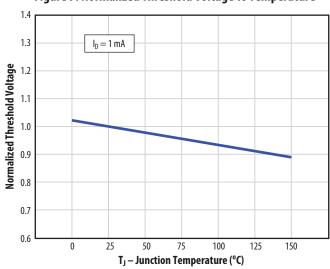
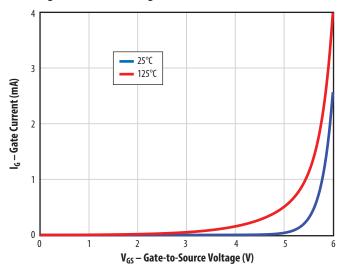
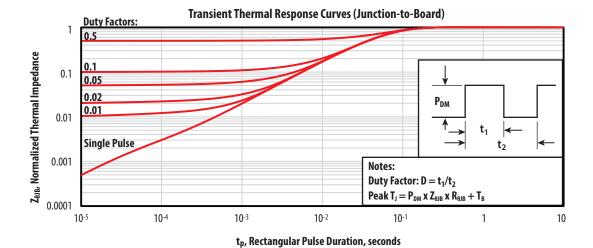


Figure 8: Normalized On-State Resistance vs Temperature


Figure 9: Normalized Threshold Voltage vs Temperature


All measurements were done with substrate shortened to source

eGaN® FET DATASHEET EPC2025

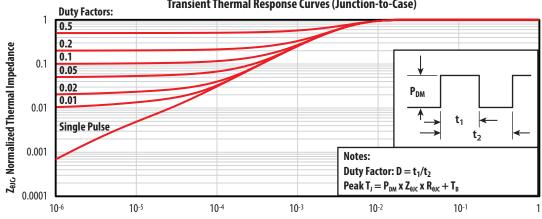
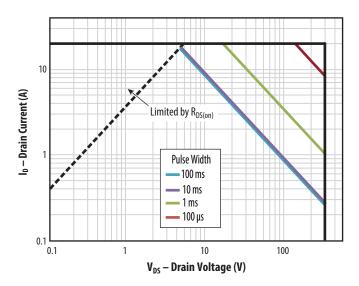
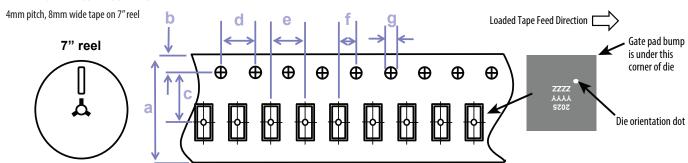

Figure 10: Gate Leakage Current

Figure 11: Transient Thermal Response Curves

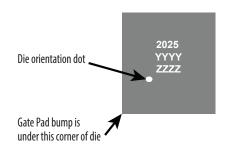

Transient Thermal Response Curves (Junction-to-Case)


t_p, Rectangular Pulse Duration, seconds

eGaN® FET DATASHEET EPC2025

Figure 12: Safe Operating Area

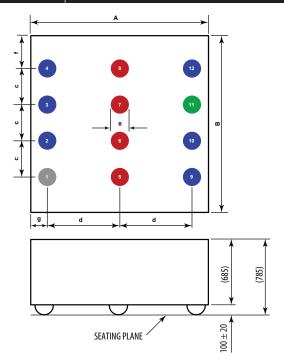
TAPE AND REEL CONFIGURATION


	EPC2025 (note 1)		
Dimension (mm)	target	min	max
а	8.00	7.90	8.30
b	1.75	1.65	1.85
c (see note)	3.50	3.45	3.55
d	4.00	3.90	4.10
е	4.00	3.90	4.10
f (see note)	2.00	1.95	2.05
g	1.5	1.5	1.6

Die is placed into pocket solder bump side down (face side down)

Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/JEDEC industry standard.

Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

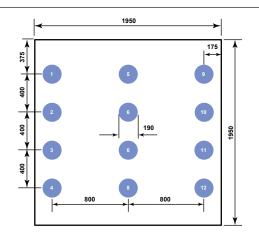

DIE MARKINGS

Part		Laser Markings	
Part Number	Part # Marking Line 1	Lot_Date Code Marking Line 2	Lot_Date Code Marking Line 3
EPC2025	2025	YYYY	ZZZZ

DIE OUTLINE

Solder Bump View

DIM		Micrometers			
	MIN	Nominal	MAX		
Α	1920	1950	1980		
В	1920	1950	1980		
c	400	400	400		
d	800	800	800		
e	180	200	220		
f	360	375	390		
g	160	175	190		


Pad 1 is Gate;

Pads 5, 6, 7, 8 are Drain; Pads 2, 3, 4, 9, 10, 12 are Source; Pad 11 is Substrate

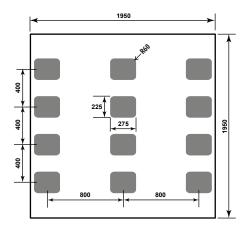
Side View

RECOMMENDED LAND PATTERN

(measurements in μ m)

The land pattern is solder mask defined Solder mask is 5 µm smaller per side than bump

Pad 1 is Gate;


Pads 2, 3, 4, 9, 10, 12 are Source;

Pads 5, 6, 7, 8 are Drain;

Pad 11 is Substrate

RECOMMENDED STENCIL DRAWING

(measurements in μ m)

Recommended stencil should be 4 mil (100 μ m) thick, must be laser cut, openings per drawing.

Intended for use with SAC305 Type 3 solder, reference 88.5% metals content.

Additional assembly resources available at http://epc-co.com/epc/DesignSupport/AssemblyBasics.aspx

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

eGaN $^{\circ}$ is a registered trademark of Efficient Power Conversion Corporation. U.S. Patents 8,350,294; 8,404,508; 8,431,960; 8,436,398; 8,785,974; 8,890,168; 8,969,918; 8,853,749; 8,823,012

Information subject to change without notice.
Revised November, 2015