Power MOSFET # 9.0 A, 52 V, N-Channel, Logic Level, Clamped MOSFET w/ESD Protection in a DPAK Package #### **Benefits** - High Energy Capability for Inductive Loads - Low Switching Noise Generation # **Features** - Diode Clamp Between Gate and Source - ESD Protection HBM 5000 V - Active Over-Voltage Gate to Drain Clamp - Scalable to Lower or Higher R_{DS(on)} - Internal Series Gate Resistance - Pb-Free Packages are Available # **Applications** Automotive and Industrial Markets: Solenoid Drivers, Lamp Drivers, Small Motor Drivers # **MAXIMUM RATINGS** (T_J = 25°C unless otherwise noted) | Rating | Symbol | Value | Unit | |--|--|------------------|------| | Drain-to-Source Voltage Internally Clamped | V _{DSS} | 52-59 | V | | Gate-to-Source Voltage - Continuous | V _{GS} | ±15 | V | | Drain Current – Continuous @ T_A = 25°C – Single Pulse (t_p = 10 μ s) | I _D
I _{DM} | 9.0
35 | Α | | Total Power Dissipation @ T _A = 25°C | P _D | 1.74 | W | | Operating and Storage Temperature Range | T _J , T _{stg} | -55 to 175 | °C | | Single Pulse Drain-to-Source Avalanche Energy – Starting T_J = 125°C (V_{DD} = 50 V, $I_{D(pk)}$ = 1.5 A, V_{GS} = 10 V, I_{C} = 25 I_{C}) | E _{AS} | 160 | mJ | | Thermal Resistance, Junction-to-Case Junction-to-Ambient (Note 1) Junction-to-Ambient (Note 2) | $egin{array}{l} R_{ hetaJC} \ R_{ hetaJA} \ R_{ hetaJA} \end{array}$ | 5.2
72
100 | °C/W | | Maximum Lead Temperature for Soldering Purposes, 1/8" from Case for 10 seconds | T _L | 260 | °C | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. - 1. When surface mounted to a FR4 board using 1" pad size, (Cu area 1.127 in²). - When surface mounted to a FR4 board using minimum recommended pad size, (Cu area 0.412 in²). 1 # ON Semiconductor® # http://onsemi.com | V _{DSS}
(Clamped) | R _{DS(ON)} TYP | I _D MAX
(Limited) | |-------------------------------|-------------------------|---------------------------------| | 52 V | 90 mΩ | 9.0 A | Y = Year 1 = Gate WW = Work Week 2 = Drain xxxxx = 05CL or 05ACL 3 = Source G = Pb-Free Package 4 = Drain # **ORDERING INFORMATION** | Device | Package | Shipping [†] | |---------------|-----------|-----------------------| | NID9N05CLT4 | DPAK | | | NID9N05CLT4G | DPAK | 2500/Tape & Reel | | NID9N05ACLT4G | (Pb-Free) | | | NID9N05CL | DPAK | | | NID9N05CLG | DPAK | 75 Units/Rail | | NID9N05ACLG | (Pb-Free) | | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. # **ELECTRICAL CHARACTERISTICS** (T_{.1} = 25°C unless otherwise noted) | Characteristic | | Symbol | Min | Тур | Max | Unit | |---|---|----------------------|-------------------------|-----------------------------|------------------------------|-----------------| | OFF CHARACTERISTICS | | 1 | | • | • | 1 | | Drain-to-Source Breakdown Voltage (Note 3) $(V_{GS}=0\ V,\ I_D=1.0\ mA,\ T_J=25^\circ C)$ $(V_{GS}=0\ V,\ I_D=1.0\ mA,\ T_J=-40^\circ C\ to\ 125^\circ C)$ Temperature Coefficient (Negative) | | V _{(BR)DSS} | 52
50.8
- | 55
54
–10 | 59
59.5
– | V
V
mV/°C | | Zero Gate Voltage Drain Current (V _{DS} = 40 V, V _{GS} = 0 V) (V _{DS} = 40 V, V _{GS} = 0 V, T _J = 125°C) | | I _{DSS} | -
- | -
- | 10
25 | μΑ | | Gate-Body Leakage Current $(V_{GS} = \pm 8 \text{ V, } V_{DS} = 0 \text{ V})$ $(V_{GS} = \pm 14 \text{ V, } V_{DS} = 0 \text{ V})$ | | | -
- | -
±22 | ±10
- | μΑ | | ON CHARACTERISTICS (Note 3 | 3) | | | | | | | Gate Threshold Voltage (Note 3) $(V_{DS} = V_{GS}, I_D = 100 \ \mu\text{A})$ Threshold Temperature Coefficient (Negative) | | | 1.3
- | 1.75
-4.5 | 2.5
- | V
mV/°C | | Static Drain-to-Source On-Resistance (Note 3) | | R _{DS(on)} | -
-
-
70
67 | 153
175
-
90
95 | 181
364
1210
-
- | mΩ | | Forward Transconductance (Note 3) (V _{DS} = 15 V, I _D = 9.0 A) | | | - | 24 | - | Mhos | | DYNAMIC CHARACTERISTICS | | | | | | | | Input Capacitance | | C _{iss} | - | 155 | 250 | pF | | Output Capacitance | $(V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V}, f = 10 \text{ kHz})$ | C _{oss} | - | 60 | 100 | | | Transfer Capacitance | citance | | - | 25 | 40 | | | Input Capacitance | | C _{iss} | - | 175 | - | pF | | Output Capacitance $(V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, f = 10 \text{ kHz})$ | | C _{oss} | - | 70 | - | | | Transfer Capacitance | | C _{rss} | _ | 30 | - | | Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%. Switching characteristics are independent of operating junction temperatures. # **ELECTRICAL CHARACTERISTICS** ($T_J = 25^{\circ}C$ unless otherwise noted) | Characteristic | | Symbol | Min | Тур | Max | Unit | |--------------------------------|--|---------------------|-------------|------------------------|---------------|------| | SWITCHING CHARACTERISTIC | CS (Note 4) | 4 | | • | | II. | | Turn-On Delay Time | | t _{d(on)} | - | 130 | 200 | ns | | Rise Time | (V _{GS} = 10 V, V _{DD} = 40 V, | t _r | - | 500 | 750 | | | Turn-Off Delay Time | $I_D = 9.0 \text{ A}, R_G = 9.0 \Omega)$ | t _{d(off)} | - | 1300 | 2000 | | | Fall Time | | t _f | - | 1150 | 1850 | | | Turn-On Delay Time | | t _{d(on)} | - | 200 | - | ns | | Rise Time | (V _{GS} = 10 V, V _{DD} = 15 V, | t _r | - | 500 | - | | | Turn-Off Delay Time | $I_D = 1.5 \text{ A}, R_G = 2 \text{ k}\Omega)$ | t _{d(off)} | - | 2500 | - | | | Fall Time | | t _f | - | 1800 | - | | | Turn-On Delay Time | | t _{d(on)} | - | 120 | - | ns | | Rise Time | (V _{GS} = 10 V, V _{DD} = 15 V, | t _r | - | 275 | - | | | Turn-Off Delay Time | $I_D = 1.5 \text{ A}, R_G = 50 \Omega)$ | t _{d(off)} | - | 1600 | - | | | Fall Time | | t _f | - | 1100 | - | | | Gate Charge | | Q _T | - | 4.5 | 7.0 | nC | | | $(V_{GS} = 4.5 \text{ V}, V_{DS} = 40 \text{ V}, I_D = 9.0 \text{ A}) \text{ (Note 3)}$ | Q ₁ | - | 1.2 | - | | | | | Q ₂ | - | 2.7 | - | | | Gate Charge | | | - | 3.6 | - | nC | | | $(V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_{D} = 1.5 \text{ A})$ (Note 3) | Q ₁ | - | 1.0 | - | | | | | Q ₂ | - | 2.0 | - | | | SOURCE-DRAIN DIODE CHAP | RACTERISTICS | <u> </u> | | • | | • | | Forward On-Voltage | $ \begin{array}{c} (I_S = 4.5 \text{ A, V}_{GS} = 0 \text{ V}) \text{ (Note 3)} \\ (I_S = 4.0 \text{ A, V}_{GS} = 0 \text{ V}) \\ (I_S = 4.5 \text{ A, V}_{GS} = 0 \text{ V, T}_J = 125^{\circ}\text{C}) \end{array} $ | V _{SD} | -
-
- | 0.86
0.845
0.725 | 1.2
-
- | V | | Reverse Recovery Time | (I _S = 4.5 A, V _{GS} = 0 V,
dI _s /dt = 100 A/μs) (Note 3) | t _{rr} | - | 700 | _ | ns | | | | t _a | - | 200 | _ | 1 | | | αίζ/αι = 100 / γμο/ (100.0 σ/ | t _b | - | 500 | - | | | Reverse Recovery Stored Charge | | Q _{RR} | - | 6.5 | - | μC | | ESD CHARACTERISTICS | | • | | | • | • | | Electro-Static Discharge | Human Body Model (HBM) | ESD | 5000 | - | _ | V | | Capability | Machine Model (MM) | | 500 | - | _ | 1 | Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%. Switching characteristics are independent of operating junction temperatures. Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics Figure 3. On–Resistance versus Gate–to–Source Voltage Figure 4. On-Resistance versus Drain Current and Gate Voltage Figure 5. On–Resistance Variation with Temperature Figure 6. Drain-to-Source Leakage Current versus Voltage Figure 7. Capacitance Variation Figure 8. Gate-To-Source and Drain-To-Source Voltage versus Total Charge Figure 9. Resistive Switching Time Variation versus Gate Resistance # **DRAIN-TO-SOURCE DIODE CHARACTERISTICS** Figure 10. Diode Forward Voltage versus Current # SAFE OPERATING AREA The Forward Biased Safe Operating Area curves define the maximum simultaneous drain-to-source voltage and drain current that a transistor can handle safely when it is forward biased. Curves are based upon maximum peak junction temperature and a case temperature (T_C) of 25°C. Peak repetitive pulsed power limits are determined by using the thermal response data in conjunction with the procedures discussed in AN569, "Transient Thermal Resistance – General Data and Its Use." Switching between the off-state and the on-state may traverse any load line provided neither rated peak current (I_{DM}) nor rated voltage (V_{DSS}) is exceeded and the transition time (t_r , t_f) do not exceed 10 μ s. In addition the total power averaged over a complete switching cycle must not exceed ($T_{J(MAX)} - T_C$)/($R_{\theta JC}$). A Power MOSFET designated E-FET can be safely used in switching circuits with unclamped inductive loads. For reliable operation, the stored energy from circuit inductance dissipated in the transistor while in avalanche must be less than the rated limit and adjusted for operating conditions differing from those specified. Although industry practice is to rate in terms of energy, avalanche energy capability is not a constant. The energy rating decreases non–linearly with an increase of peak current in avalanche and peak junction temperature. Although many E–FETs can withstand the stress of drain–to–source avalanche at currents up to rated pulsed current (I_{DM}), the energy rating is specified at rated continuous current (I_{D}), in accordance with industry custom. The energy rating must be derated for temperature as shown in the accompanying graph (Figure 12). Maximum energy at currents below rated continuous I_{D} can safely be assumed to equal the values indicated. Figure 11. Maximum Rated Forward Biased Safe Operating Area Figure 12. Thermal Response #### PACKAGE DIMENSIONS # **DPAK (SINGLE GAUGE)** CASE 369C ISSUE D - 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. - 2. CONTROLLING DIMENSION: INCHES. 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI- - MENSIONS b3, L3 and Z. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL - NOT EXCEED 0.006 INCHES PER SIDE. 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY. - 6. DATUMS A AND B ARE DETERMINED AT DATUM | | INCHES MILLIMETER | | | IETERS | | |-----|-------------------|-------|----------|----------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 0.086 | 0.094 | 2.18 | 2.38 | | | A1 | 0.000 | 0.005 | 0.00 | 0.13 | | | b | 0.025 | 0.035 | 0.63 | 0.89 | | | b2 | 0.030 | 0.045 | 0.76 | 1.14 | | | b3 | 0.180 | 0.215 | 4.57 | 5.46 | | | С | 0.018 | 0.024 | 0.46 | 0.61 | | | c2 | 0.018 | 0.024 | 0.46 | 0.61 | | | D | 0.235 | 0.245 | 5.97 | 6.22 | | | E | 0.250 | 0.265 | 6.35 | 6.73 | | | е | 0.090 BSC | | 2.29 BSC | | | | Н | 0.370 | 0.410 | 9.40 | 10.41 | | | L | 0.055 | 0.070 | 1.40 | 1.78 | | | L1 | 0.108 | REF | 2.74 | 2.74 REF | | | L2 | 0.020 | BSC | 0.51 | BSC | | | L3 | 0.035 | 0.050 | 0.89 | 1.27 | | | L4 | | 0.040 | | 1.01 | | | Z | 0.155 | | 3.93 | | | # STYLE 2: PIN 1. GATE 2. DRAIN - 3. SOURCE 4. DRAIN # **SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. # **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative