Silicon Controlled Rectifiers ### **Reverse Blocking Thyristors** Designed primarily for half-wave ac control applications, such as motor controls, heating controls, and power supplies; or wherever half-wave silicon gate-controlled devices are needed. #### **Features** - Blocking Voltage to 800 Volts - On-State Current Rating of 12 Amperes RMS at 80°C - High Surge Current Capability 100 Amperes - Rugged, Economical TO-220AB Package - Glass Passivated Junctions for Reliability and Uniformity - Minimum and Maximum Values of IGT, VGT an IH Specified for Ease of Design - High Immunity to dv/dt 100 V/usec Minimum at 125°C - These are Pb-Free Devices #### **MAXIMUM RATINGS** (T_{.I} = 25°C unless otherwise noted) | Rating | Symbol | Value | Unit | |---|----------------------------|-------------------|--------------------| | Peak Repetitive Off–State Voltage (Note 1)
(T _J = -40 to 125°C, Sine Wave,
50 to 60 Hz, Gate Open) | $V_{ m DRM,} \ V_{ m RRM}$ | | V | | MCR12DG
MCR12MG
MCR12NG | | 400
600
800 | | | On-State RMS Current (180° Conduction Angles; T _C = 80°C) | I _{T(RMS)} | 12 | А | | Peak Non-repetitive Surge Current (1/2 Cycle, Sine Wave 60 Hz, T _J = 125°C) | I _{TSM} | 100 | А | | Circuit Fusing Consideration (t = 8.33 ms) | l ² t | 41 | A ² sec | | Forward Peak Gate Power (Pulse Width ≤ 1.0 μs, T _C = 80°C) | P _{GM} | 5.0 | W | | Forward Average Gate Power (t = 8.3 ms, T _C = 80°C) | P _{G(AV)} | 0.5 | W | | Average On-State Current (180° Conduction Angles; T _C = 80°C) | I _{T(AV)} | 7.8 | Α | | Forward Peak Gate Current (Pulse Width \leq 1.0 μ s, T _C = 90°C) | I _{GM} | 2.0 | А | | Operating Junction Temperature Range | TJ | -40 to +125 | °C | | Storage Temperature Range | T _{stg} | -40 to +150 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded. #### Littelfuse.com #### SCRs 12 AMPERES RMS 400 thru 800 VOLTS ## MARKING DIAGRAM = Assembly Location Y = Year WW = Work Week x = D, M, or N G = Pb-Free Package AKA = Diode Polarity | PIN ASSIGNMENT | | | | |----------------|---------|--|--| | 1 | Cathode | | | | 2 | Anode | | | | 3 | Gate | | | | 4 | Anode | | | #### **ORDERING INFORMATION** | Device | Package | Shipping | |---------|-----------------------|-----------------| | MCR12DG | TO-220AB
(Pb-Free) | 50 Units / Rail | | MCR12MG | TO-220AB
(Pb-Free) | 50 Units / Rail | | MCR12NG | TO-220AB
(Pb-Free) | 50 Units / Rail | #### THERMAL CHARACTERISTICS | Characteristic | Symbol | Value | Unit | |---|-------------------------------|-------------|------| | Thermal Resistance, Junction-to-Case Junction-to-Ambient | $R_{ heta JC} \ R_{ heta JA}$ | 2.2
62.5 | °C/W | | Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds | TL | 260 | °C | | Characteristic | Symbol | Min | Тур | Max | Unit | |---|--|--------|--------|-------------|------| | OFF CHARACTERISTICS | | | | | | | Peak Repetitive Forward or Reverse Blocking Current $(V_D = Rated \ V_{DRM} \ and \ V_{RRM}; \ Gate \ Open)$ $T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$ | I _{DRM} ,
I _{RRM} | _
_ | _
_ | 0.01
2.0 | mA | | ON CHARACTERISTICS | | | | | | | Peak Forward On–State Voltage (Note 2) (I _{TM} = 24 A) | V _{TM} | _ | _ | 2.2 | V | | Gate Trigger Current (Continuous dc) ($V_D = 12 \text{ V}; R_L = 100 \Omega$) | I _{GT} | 2.0 | 8.0 | 20 | mA | | Holding Current (V _D = 12 V, Gate Open, Initiating Current = 200 mA) | I _H | 4.0 | 20 | 40 | mA | | Latch Current (V _D = 12 V, I _G = 20 mA) | IL | 6.0 | 25 | 60 | mA | | Gate Trigger Voltage (Continuous dc) ($V_D = 12 \text{ V}; R_L = 100 \Omega$) | V _{GT} | 0.5 | 0.65 | 1.0 | V | | DYNAMIC CHARACTERISTICS | | | | | | | Critical Rate of Rise of Off–State Voltage $(V_D = Rated V_{DRM}, Exponential Waveform, Gate Open, T_J = 125°C)$ | dv/dt | 100 | 250 | - | V/μs | | Repetitive Critical Rate of Rise of On–State Current IPK = 50 A, Pw = 40 μsec, diG/dt = 1 A/μsec, Igt = 50 mA | di/dt | _ | - | 50 | A/μs | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. Indicates Pulse Test: Pulse Width ≤ 2.0 ms, Duty Cycle ≤ 2%. Figure 2. On-State Power Dissipation Figure 3. Typical On-State Characteristics Figure 4. Typical Gate Trigger Current versus Junction Temperature Figure 5. Typical Holding Current versus Junction Temperature Figure 6. Typical Gate Trigger Voltage versus Junction Temperature Figure 7. Typical Latching Current versus Junction Temperature #### PACKAGE DIMENSIONS TO-220 CASE 221A-09 **ISSUE AH** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. - DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED. | | INC | HES | MILLIMETERS | | | |-----|-------|-------|-------------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 0.570 | 0.620 | 14.48 | 15.75 | | | В | 0.380 | 0.415 | 9.66 | 10.53 | | | С | 0.160 | 0.190 | 4.07 | 4.83 | | | D | 0.025 | 0.038 | 0.64 | 0.96 | | | F | 0.142 | 0.161 | 3.61 | 4.09 | | | G | 0.095 | 0.105 | 2.42 | 2.66 | | | Н | 0.110 | 0.161 | 2.80 | 4.10 | | | J | 0.014 | 0.024 | 0.36 | 0.61 | | | K | 0.500 | 0.562 | 12.70 | 14.27 | | | L | 0.045 | 0.060 | 1.15 | 1.52 | | | N | 0.190 | 0.210 | 4.83 | 5.33 | | | Q | 0.100 | 0.120 | 2.54 | 3.04 | | | R | 0.080 | 0.110 | 2.04 | 2.79 | | | S | 0.045 | 0.055 | 1.15 | 1.39 | | | Т | 0.235 | 0.255 | 5.97 | 6.47 | | | U | 0.000 | 0.050 | 0.00 | 1.27 | | | ٧ | 0.045 | | 1.15 | | | | Z | | 0.080 | | 2.04 | | STYLE 3: PIN 1. CATHODE - 2. ANODE - GATE ANODE Littelfuse products are not designed for, and shall not be used for, any purpose (including, without limitation, automotive, military, aerospace, medical, life-saving, life-sustaining or nuclear facility applications, devices intended for surgical implant into the body, or any other application in which the failure or lack of desired operation of the product may result in personal injury, death, or property damage) other than those expressly set forth in applicable Littelfuse product documentation. Warranties granted by Littelfuse shall be deemed void for products used for any purpose not expressly set forth in applicable Littelfuse documentation. Littelfuse shall not be liable for any claims or damages arising out of products used in applications not expressly intended by Littelfuse as set forth in applicable Littelfuse documentation. The sale and use of Littelfuse products is subject to Littelfuse Terms and Conditions of Sale, unless otherwise agreed by Littelfuse. #### Littelfuse.com