GENERAL DESCRIPTION The ICS8305I is a low skew, 1-to-4, Differential/LVCMOS-to-LVCMOS/LVTTL Fanout Buffer. The ICS8305I has selectable clock inputs that accept either differential or single ended input levels. The clock enable is internally synchronized to eliminate runt pulses on the outputs during asynchronous assertion/deassertion of the clock enable pin. Outputs are forced LOW when the clock is disabled. A separate output enable pin controls whether the outputs are in the active or high impedance state. Guaranteed output and part-to-part skew characteristics make the ICS8305I ideal for those applications demanding well defined performance and repeatability. #### **F**EATURES - 4 LVCMOS/LVTTL outputs - · Selectable differential or LVCMOS/LVTTL clock inputs - CLK, nCLK pair can accept the following differential input levels: LVPECL, LVDS, LVHSTL, HCSL, SSTL - LVCMOS_CLK supports the following input types: LVCMOS, LVTTL - Maximum output frequency: 350MHz - Output skew: 40ps (maximum) - Part-to-part skew: 700ps (maximum) - · Additive phase jitter, RMS: 0.04ps (typical) - 3.3V core, 3.3V, 2.5V or 1.8V output operating supply - -40°C to 85°C ambient operating temperature - · Lead-Free package fully RoHS compliant ### **BLOCK DIAGRAM** #### PIN ASSIGNMENT # ICS8305I 16-Lead TSSOP 4.4mm x 3.0mm x 0.92mm package body G Package Top View TABLE 1. PIN DESCRIPTIONS | Number | Name | Т | уре | Description | |----------------|------------------|--------|---------------------|--| | 1, 9, 13 | GND | Power | | Power supply ground. | | 2 | OE | Input | Pullup | Output enable. When LOW, outputs are in HIGH impedance state. When HIGH, outputs are active. LVCMOS / LVTTL interface levels. | | 3 | $V_{_{ m DD}}$ | Power | | Core supply pin. | | 4 | CLK_EN | Input | Pullup | Synchronizing clock enable. When LOW, the output clocks are disabled. When HIGH, output clocks are enabled. LVCMOS / LVTTL interface levels. | | 5 | CLK | Input | Pulldown | Non-inverting differential clock input. | | 6 | nCLK | Input | Pullup/
Pulldown | Inverting differential clock input. $V_{DD}/2$ default when left floating. | | 7 | CLK_SEL | Input | Pullup | Clock select input. When HIGH, selects CLK, nCLK inputs. When LOW, selects LVCMOS_CLK input. LVCMOS / LVTTL interface levels. | | 8 | LVCMOS_CLK | Input | Pulldown | LVCMOS / LVTTL clock input. | | 10, 12, 14, 16 | Q3, Q2, Q1, Q0 | Output | | Clock outputs. LVCMOS / LVTTL interface levels. | | 11, 15 | V _{DDO} | Power | | Output supply pins. | NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values. TABLE 2. PIN CHARACTERISTICS | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------------|--|-----------------|---------|---------|---------|-------| | C _{IN} | Input Capacitance | | | 4 | | pF | | R _{PULLUP} | Input Pullup Resistor | | | 51 | | kΩ | | R _{PULLDOWN} | Input Pulldown Resistor | | | 51 | | kΩ | | C _{PD} | Power Dissipation Capacitance (per output) | | | 11 | | pF | | R _{out} | Output Impedance | | 5 | 7 | 12 | Ω | TABLE 3A. CONTROL INPUT FUNCTION TABLE | | | Outputs | | | |----|--------|---------|-----------------|---------------| | OE | CLK_EN | CLK_SEL | Selected Source | Q0:Q3 | | 1 | 0 | 0 | LVCMOS_CLK | Disabled; LOW | | 1 | 0 | 1 | CLK, nCLK | Disabled; LOW | | 1 | 1 | 0 | LVCMOS_CLK | Enabled | | 1 | 1 | 1 | CLK, nCLK | Enabled | | 0 | Х | X | | HiZ | NOTE: After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge as shown in Figure 1. FIGURE 1. CLK_EN TIMING DIAGRAM #### ABSOLUTE MAXIMUM RATINGS Supply Voltage, V_{DD} 4.6V Inputs, V_{I} -0.5V to V_{DD} + 0.5 V Outputs, V_{O} -0.5V to V_{DDO} + 0.5V Package Thermal Impedance, θ_{IA} 89°C/W (0 Ifpm) Storage Temperature, T_{STG} -65°C to 150°C NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability. Table 4A. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$ | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|-----------------------|-----------------|---------|---------|---------|-------| | V _{DD} | Core Supply Voltage | | 3.135 | 3.3 | 3.465 | V | | | | | 3.135 | 3.3 | 3.465 | V | | V _{DDO} | Output Supply Voltage | | 2.375 | 2.5 | 2.625 | V | | | | | 1.65 | 1.8 | 1.95 | V | | I _{DD} | Power Supply Current | | | | 21 | mA | | I _{DDO} | Output Supply Current | | | | 5 | mA | Table 4B. LVCMOS/LVTTL DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, Ta = -40°C to 85°C | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|-----------------|---------------------|--------------------------------|------------------------|---------|-----------------------|-------| | V | Input | CLK_EN, CLK_SEL, OE | | 2 | | V _{DD} + 0.3 | V | | V _{IH} | High Voltage | LVCMOS_CLK | | 2 | | V _{DD} + 0.3 | V | | V | Input | CLK_EN, CLK_SEL, OE | | -0.3 | | 0.8 | V | | V _{IL} | Low Voltage | LVCMOS_CLK | | -0.3 | | 1.3 | V | | , | Input | CLK_EN, CLK_SEL, OE | $V_{DD} = V_{IN} = 3.465V$ | | | 5 | μΑ | | I _{IH} | High Current | LVCMOS_CLK | $V_{DD} = V_{IN} = 3.465V$ | | | 150 | μΑ | | | Input | CLK_EN, CLK_SEL, OE | $V_{DD} = 3.465V, V_{IN} = 0V$ | -150 | | | μΑ | | I _{IL} | Low Current | LVCMOS_CLK | $V_{DD} = 3.465V, V_{IN} = 0V$ | -5 | | | μΑ | | | | | $V_{DDO} = 3.3V \pm 5\%$ | 2.6 | | | V | | V _{OH} | Output High V | oltage; NOTE 1 | $V_{DDO} = 2.5V \pm 5\%$ | 1.8 | | | V | | | | | $V_{DDO} = 1.8V \pm 0.15V$ | V _{DDO} - 0.3 | | | V | | | | | $V_{DDO} = 3.3V \pm 5\%$ | | | 0.5 | V | | V _{OL} | Output Low Vo | oltage; NOTE 1 | $V_{DDO} = 2.5V \pm 5\%$ | | | 0.5 | V | | | | | $V_{DDO} = 1.8V \pm 0.15V$ | | | 0.4 | V | | I _{OZL} | Output Tristate | e Current Low | | -5 | | | μΑ | | I _{OZH} | Output Tristate | e Current High | | | | 5 | μΑ | NOTE 1: Outputs terminated with 50Ω to $V_{DDO}/2$. See Parameter Measurement Information, Output Load Test Circuit. ### Low Skew, 1-to-4, Multiplexed Differential/ LVCMOS-TO-LVCMOS/LVTTL FANOUT BUFFER Table 4C. Differential DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, Ta = -40°C to 85°C | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|-------------------------------|-------------|--------------------------------|-----------|---------|------------------------|-------| | | Input High Current | nCLK | $V_{IN} = V_{DD} = 3.465V$ | | | 150 | μA | | 'IH | Imput riigh Current | CLK | $V_{IN} = V_{DD} = 3.465V$ | | | 150 | μΑ | | | | nCLK | $V_{IN} = 0V, V_{DD} = 3.465V$ | -150 | | | μA | | I _{IL} | Input Low Current | CLK | $V_{IN} = 0V, V_{DD} = 3.465V$ | -5 | | | μA | | V _{PP} | Peak-to-Peak Input | Voltage | | 0.15 | | 1.3 | V | | V _{CMR} | Common Mode Inpu
NOTE 1, 2 | ut Voltage; | | GND + 0.5 | | V _{DD} - 0.85 | V | NOTE 1: For single ended applications, the maximum input voltage for CLK, nCLK is V_{DD} + 0.3V. NOTE 2: Common mode voltage is defined as $V_{\rm HI}$. **Table 5A. AC Characteristics,** $V_{DD} = V_{DDO} = 3.3V \pm 5\%$, Ta = -40°C to 85°C | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|---|---|-----------------------------|---------|---------|---------|-------| | f | Output Frequency | | Ref = CLK/nCLK | | | 350 | MHz | | T _{MAX} | Output Frequency | | Ref = LVCMOS_CLK | | | 300 | MHz | | tp _{LH} | Propagation Delay,
Low to High | LVCMOS_CLK;
NOTE 1A
CLK, nCLK;
NOTE 1B | | 1.75 | | 2.8 | ns | | tsk(o) | Output Skew; NOTE | 2, 6 | Measured on the Rising Edge | | | 40 | ps | | tsk(pp) | Part-to-Part Skew; N | NOTE 3, 6 | | | | 700 | ps | | <i>t</i> jit | Buffer Additive Phas
refer to Additive Pha
NOTE 5 | , , | | | 0.04 | | ps | | t_{R}/t_{F} | Output Rise/Fall Tim | ne | 20% to 80% | 100 | | 700 | ps | | odc | Output Duty Cycle | | <i>f</i> ≤ 200MHz | 45 | | 55 | % | | ouc | Output Duty Cycle | | f > 200MHz | 42 | | 58 | % | | t _{EN} | Output Enable Time; NOTE 4 | | | | | 5 | ns | | t _{DIS} | Output Disable Time | e; NOTE 4 | | | | 5 | ns | NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions. NOTE 1A: Measured from the $V_{\rm DD}/2$ of the input to $V_{\rm DDO}/2$ of the output. NOTE 1B: Measured from the differential input crossing point to $V_{\rm DDO}/2$ of the output. NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at $V_{\rm DDO}/2$. NOTE 3: Defined as skew between outputs on different devices operating a the same supply voltages and with equal load conditions. Using the same type of input on each device, the output is measured at V_{nno}/2. NOTE 4: These parameters are guaranteed by characterization. Not tested in production. NOTE 5: Driving only one input clock. NOTE 6: This parameter is defined in accordance with JEDEC Standard 65. ### Low Skew, 1-to-4, Multiplexed Differential/ LVCMOS-TO-LVCMOS/LVTTL FANOUT BUFFER Table 5B. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 2.5V \pm 5\%$, Ta = -40°C to 85°C | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |---------------------------------|--|---|-----------------------------|---------|---------|---------|-------| | f | Output Fraguanay | | Ref = CLK/nCLK | | | 350 | MHz | | f _{MAX} | Output Frequency | | Ref = LVCMOS_CLK | | | 300 | MHz | | tp _{LH} | Propagation Delay,
Low to High | LVCMOS_CLK;
NOTE 1A
CLK, nCLK;
NOTE 1B | | 1.75 | | 2.95 | ns | | tsk(o) | Output Skew; NOTE | 2, 6 | Measured on the Rising Edge | | | 40 | ps | | tsk(pp) | Part-to-Part Skew; N | IOTE 3, 6 | | | | 800 | ps | | tjit | Buffer Additive Phase refer to Additive Phase NOTE 5 | , , | | | 0.04 | | ps | | t _R / t _F | Output Rise/Fall Tin | пе | 20% to 80% | 100 | | 700 | ps | | | Outrout Duty Ovala | | <i>f</i> ≤ 166MHz | 45 | | 55 | % | | odc | Output Duty Cycle | | f > 166MHz | 42 | | 58 | % | | t _{EN} | Output Enable Time; NOTE 4 | | | | | 5 | ns | | t _{DIS} | Output Disable Time | e; NOTE 4 | | | | 5 | ns | NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions. - NOTE 1A: Measured from the $V_{DD}/2$ of the input to $V_{DDO}/2$ of the output. NOTE 1B: Measured from the differential input crossing point to $V_{DDO}/2$ of the output. - NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDO}/2. - NOTE 3: Defined as skew between outputs on different devices operating a the same supply voltages and - with equal load conditions. Using the same type of input on each device, the output is measured at $V_{\text{DDO}}/2$. - NOTE 4: These parameters are guaranteed by characterization. Not tested in production. - NOTE 5: Driving only one input clock. - NOTE 6: This parameter is defined in accordance with JEDEC Standard 65. Table 5C. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm -0.15V$, Ta = -40°C to 85°C | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |---------------------------------|--|---|-----------------------------|---------|---------|---------|-------| | f | Output Fraguency | | Ref = CLK/nCLK | | | 350 | MHz | | f _{MAX} | Output Frequency | | Ref = LVCMOS_CLK | | | 300 | MHz | | tp _{LH} | Propagation Delay,
Low to High | LVCMOS_CLK;
NOTE 1A
CLK, nCLK;
NOTE 1B | | 1.75 | | 3.7 | ns | | tsk(o) | Output Skew; NOTE | 2, 6 | Measured on the Rising Edge | | | 45 | ps | | tsk(pp) | Part-to-Part Skew; N | NOTE 3, 6 | | | | 900 | ps | | tjit | Buffer Additive Phase refer to Additive Phase NOTE 5 | , , | | | 0.04 | | ps | | t _R / t _F | Output Rise/Fall Tin | ne | 20% to 80% | 100 | | 700 | ps | | | Outrout Duty Cycle | | <i>f</i> ≤ 166MHz | 45 | | 55 | % | | odc | Output Duty Cycle | | f > 166MHz | 42 | | 58 | % | | t _{EN} | Output Enable Time; NOTE 4 | | | | | 5 | ns | | t _{DIS} | Output Disable Time | e; NOTE 4 | | | | 5 | ns | For notes, see Table 5B. #### **ADDITIVE PHASE JITTER** The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the *dBc Phase Noise*. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a ratio of the power in the 1Hz band to the power in the fundamental. When the required offset is specified, the phase noise is called a *dBc* value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot. As with most timing specifications, phase noise measurements have issues. The primary issue relates to the limitations of the equipment. Often the noise floor of the equipment is higher than the noise floor of the device. This is illustrated above. The de- vice meets the noise floor of what is shown, but can actually be lower. The phase noise is dependant on the input source and measurement equipment. ### PARAMETER MEASUREMENT INFORMATION #### 3.3V CORE/3.3V OUTPUT LOAD AC TEST CIRCUIT #### 3.3V CORE/2.5V OUTPUT LOAD AC TEST CIRCUIT #### 3.3V CORE/1.8V OUTPUT LOAD AC TEST CIRCUIT #### DIFFERENTIAL INPUT LEVEL #### **OUTPUT SKEW** #### PART-TO-PART SKEW #### PROPAGATION DELAY #### OUTPUT RISE/FALL TIME #### OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD ### **APPLICATION INFORMATION** #### RECOMMENDATION FOR UNUSED INPUT AND OUTPUT PINS #### Inputs: #### LVCMOS_CLK Input For applications not requiring the use of a clock input, it can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from the LVCMOS_CLK input to ground. #### **CLK/nCLK Inputs** For applications not requiring the use of the differential input, both CLK and nCLK can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from CLK to ground. #### **LVCMOS Control Pins** All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used. #### **Outputs:** #### **LVCMOS Outputs** All unused LVCMOS outputs can be left floating. There should be no trace attached. #### WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS Figure 2 shows how a differential input can be wired to accept single ended levels. The reference voltage $V_1 = V_{DD}/2$ is generated by the bias resistors R1 and R2. The bypass capacitor (C1) is used to help filter noise on the DC bias. This bias circuit should be located as close to the input pin as possible. The ratio of R1 and R2 might need to be adjusted to position the V_1 in the center of the input voltage swing. For example, if the input clock swing is 2.5V and $V_{DD} = 3.3V$, R1 and R2 value should be adjusted to set V_1 at 1.25V. The values below are for when both the single ended swing and V_{DD} are at the same voltage. This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the input will attenuate the signal in half. This can be done in one of two ways. First, R3 and R4 in parallel should equal the transmission line impedance. For most 50Ω applications, R3 and R4 can be 100Ω . The values of the resistors can be increased to reduce the loading for slower and weaker LVCMOS driver. When using single-ended signaling, the noise rejection benefits of differential signaling are reduced. Even though the differential input can handle full rail LVCMOS signaling, it is recommended that the amplitude be reduced. The datasheet specifies a lower differential amplitude, however this only applies to differential signals. For single-ended applications, the swing can be larger, however $V_{\rm IL}$ cannot be less than -0.3V and $V_{\rm IH}$ cannot be more than $V_{\rm DD}$ + 0.3V. Though some of the recommended components might not be used, the pads should be placed in the layout. They can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a differential signal. FIGURE 2. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT #### DIFFERENTIAL CLOCK INPUT INTERFACE The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both V_{SWING} and V_{OH} must mee the V_{PP} and V_{CMR} input requirements. Figures 3A to 3E show interface examples for the CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are examples only. Please consult with the vendor of the driver component to confirm the driver termination requirements. For example in *Figure 3A*, the input termination applies for LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation. FIGURE 3A. CLK/NCLK INPUT DRIVEN BY LVHSTL DRIVER FIGURE 3B. CLK/NCLK INPUT DRIVEN BY 3.3V LVPECL DRIVER FIGURE 3C. CLK/NCLK INPUT DRIVEN BY 3.3V LVPECL DRIVER FIGURE 3D. CLK/NCLK INPUT DRIVEN BY 3.3V LVDS DRIVER FIGURE 3E. CLK/NCLK INPUT DRIVEN BY 3.3V LVPECL DRIVER WITH AC COUPLE #### SCHEMATIC EXAMPLE This application note provides general design guide using ICS8305I LVCMOS buffer. *Figure 4* shows a schematic example of the ICS8305I LVCMOS clock buffer. In this example, the input is driven by an LVCMOS driver. CLK_EN is set at logic low to select LVCMOS_CLK input. FIGURE 4. EXAMPLE ICS8305I LVCMOS CLOCK OUTPUT BUFFER SCHEMATIC ### RELIABILITY INFORMATION Table 6. $\theta_{\text{JA}} \text{vs. Air Flow Table for 16 Lead TSSOP}$ ## $\boldsymbol{\theta}_{_{JA}}$ by Velocity (Linear Feet per Minute) 0 200 500 Single-Layer PCB, JEDEC Standard Test Boards 137.1°C/W 118.2°C/W 106.8°C/W Multi-Layer PCB, JEDEC Standard Test Boards 89.0°C/W 81.8°C/W 78.1°C/W NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs. #### TRANSISTOR COUNT The transistor count for ICS8305I is: 459 #### PACKAGE OUTLINE - G SUFFIX FOR 16 LEAD TSSOP TABLE 7. PACKAGE DIMENSIONS | SYMBOL | Millin | neters | |---------|---------|---------| | STWIBOL | Minimum | Maximum | | N | 1 | 6 | | Α | | 1.20 | | A1 | 0.05 | 0.15 | | A2 | 0.80 | 1.05 | | b | 0.19 | 0.30 | | С | 0.09 | 0.20 | | D | 4.90 | 5.10 | | Е | 6.40 E | BASIC | | E1 | 4.30 | 4.50 | | е | 0.65 E | BASIC | | L | 0.45 | 0.75 | | α | 0° | 8° | | aaa | | 0.10 | Reference Document: JEDEC Publication 95, MO-153 ## Low Skew, 1-to-4, Multiplexed Differential/LVCMOS-to-LVCMOS/LVTTL Fanout Buffer #### TABLE 8. ORDERING INFORMATION | Part/Order Number | Marking | Package | Shipping Packaging | Temperature | |-------------------|----------|---------------------------|--------------------|---------------| | 8305AGI | 8305AGI | 16 Lead TSSOP | tube | -40°C to 85°C | | 8305AGIT | 8305AGI | 16 Lead TSSOP | tape & reel | -40°C to 85°C | | 8305AGILF | 8305AGIL | 16 Lead "Lead-Free" TSSOP | tube | -40°C to 85°C | | 8305AGILFT | 8305AGIL | 16 Lead "Lead-Free" TSSOP | tape & reel | -40°C to 85°C | While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Inc. (IDT) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments. ## Low Skew, 1-to-4, Multiplexed Differential/LVCMOS-to-LVCMOS/LVTTL Fanout Buffer | REVISION HISTORY SHEET | | | | | | |------------------------|-----------|-------------|---|---------|--| | Rev | Table | Page | Description of Change | Date | | | А | Т8 | 14 | Ordering Information table - corrected Part/Order Number typo from ICS88305AGIT to ICS8305AGIT. | 1/20/04 | | | В | T5A - T5C | 5 & 6
7 | AC Characteristics Tables - changed tjit from 0.05ps typical to 0.04ps typical. Updated Additive Phase Jitter plot. | 2/26/04 | | | В | T1 | 2 | Pin Description Table - corrected CLK_EN description. | 12/7/04 | | | В | Т8 | 14 | Ordering Information Table - added Lead-Free part number | 5/19/05 | | | В | Т8 | 14
16 | Updated datasheet's header/footer with IDT from ICS. Removed ICS prefix from Part/Order Number column. Added Contact Page. | 7/29/10 | | | В | T5A, T5B | 5 & 6
10 | AC Characteristics Tables - added; 'NOTE: Electrical parameters are guaranteed'. Added Recommendation for Unused Input and Output Pins section, Updated the 'Wiring the Differential Input to Accept Single Ended Levels' | 9/17/12 | | | | T8 | 14 | Deleted Quantity from Shipping Packaging | | | ## Low Skew, 1-to-4, Multiplexed Differential/LVCMOS-to-LVCMOS/LVTTL Fanout Buffer ## We've Got Your Timing Solution. 6024 Silver Creek Valley Road San Jose, CA 95138 Sales 800-345-7015 (inside USA) +408-284-8200 (outside USA) Fax: 408-284-2775 Tech Support netcom@idt.com © 2010 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA