Rev. 3.0, 7/2006

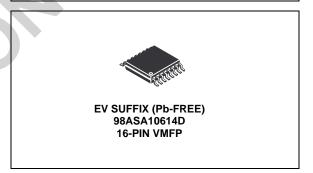
√RoHS

0.7 A 6.8 V Dual H-Bridge Motor Driver

The 17533 is a monolithic dual H-Bridge power IC ideal for portable electronic applications containing bipolar stepper motors and/or brush DC-motors (e.g., cameras and disk drive head positioners).

The 17533 operates from 2.0 V to 6.8 V, with independent control of each H-Bridge via parallel MCU interface (3.0 V- and 5.0 V-compatible logic). The device features built-in shoot-through current protection and an undervoltage shutdown function.

The 17533 has four operating modes: Forward, Reverse, Brake, and Tri-Stated (High Impedance). The 17533 has a low total $R_{DS(ON)}$ of 1.2 Ω (max @ 25°C).


The 17533's low output resistance and high slew rates provide efficient drive for many types of micromotors.

Features

- Low Total R_{DS(ON)} 0.8 Ω (Typ), 1.2 Ω (Max) @ 25°C
- Output Current 0.7 A (DC), 1.4 A (Peak)
- Shoot-Through Current Protection Circuit
- 3.0 V/5.0 V CMOS-Compatible Inputs
- · PWM Control Input Frequency up to 200 kHz
- · Built-In 2-Channel H-Bridge Driver
- · Low Power Consumption
- · Undervoltage Detection and Shutdown Circuit
- Pb-Free Packaging Designated by Suffix Code EV

17533

H-BRIDGE MOTOR DRIVER

ORDERING INFORMATION				
Device	Temperature Range (T _A)	Package		
MPC17533EV/EL	-20°C to 65°C	16 VMFP		

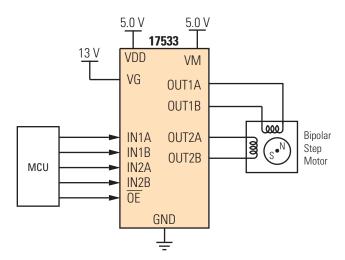
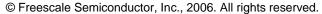



Figure 1. 17533 Simplified Application Diagram

 ^{*} This document contains certain information on a new product.
 Specifications and information herein are subject to change without notice.

INTERNAL BLOCK DIAGRAM

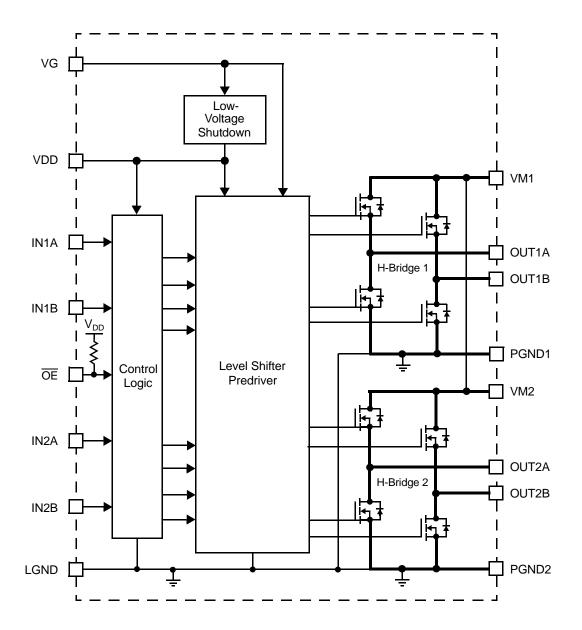


Figure 2. 17533 Simplified Internal Block Diagram

PIN CONNECTIONS

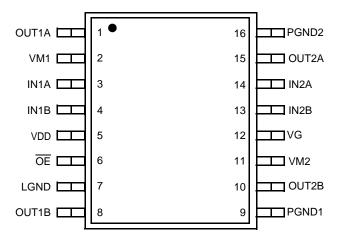


Figure 3. 17533 Pin Connections

Table 1. PIN Function Description

Pin	Pin Name	Formal Name	Definition
1	OUT1A	H-Bridge Output 1A	Output A of H-Bridge channel 1.
2	VM1	Motor Drive Power Supply 1	Positive power source connection for H-Bridge 1 (Motor Drive Power Supply).
3	IN1A	Logic Input Control 1A	Logic input control of OUT1A (refer to Table <u>5, Truth Table</u> , page <u>7</u>).
4	IN1B	Logic Input Control 1B	Logic input control of OUT1B (refer to Table <u>5, Truth Table</u> , page <u>7</u>).
5	VDD	Logic Supply	Control circuit power supply pin.
6	ŌĒ	Output Enable	Logic output Enable control of H-Bridges (Low = True).
7	LGND	Logic Ground	Low-current logic signal ground.
8	OUT1B	H-Bridge Output 1B	Output B of H-Bridge channel 1.
9	PGND1	Power Ground 1	High-current power ground 1.
10	OUT2B	H-Bridge Output 2B	Output B of H-Bridge channel 2.
11	VM2	Motor Drive Power Supply 2	Positive power source connection for H-Bridge 2 (Motor Drive Power Supply).
12	VG	Gate Driver Circuit Voltage Input	Input pin for the gate drive voltage.
13	IN2B	Logic Input Control 2B	Logic input control of OUT2B (refer to Table <u>5, Truth Table</u> , page <u>7</u>).
14	IN2A	Logic Input Control 2A	Logic input control of OUT2A (refer to Table <u>5, Truth Table</u> , page <u>7</u>).
15	OUT2A	H-Bridge Output 2A	Output A of H-Bridge channel 2.
16	PGND2	Power Ground 2	High-current power ground 2.

ELECTRICAL CHARACTERISTICS

MAXIMUM RATINGS

Table 2. Maximum Ratings

All voltages are with respect to ground unless otherwise noted. Exceeding the ratings may cause a malfunction or permanent damage to the device.

Rating	Symbol	Value	Unit
Motor Supply Voltage	V _M	-0.5 to 8.0	V
Gate Driver Circuit Power Supply Voltage	V _G	-0.5 to 14	V
Logic Supply Voltage	V _{DD}	-0.5 to 7.0	V
Signal Input Voltage	V _{IN}	-0.5 to V _{DD} +0.5	V
Driver Output Current			А
Continuous	I _O	0.7	
Peak ⁽¹⁾	l _{ОРК}	1.4	
ESD Voltage ⁽²⁾			V
Human Body Model	V _{ESD1}	±1500	
Machine Model	V _{ESD2}	±200	
Operating Junction Temperature	TJ	-55 to 150	°C
Operating Ambient Temperature	T _A	-20 to 65	°C
Storage Temperature Range	T _{STG}	-55 to 150	°C
Thermal Resistance (3)	$R_{ hetaJA}$	150	°C/W
Power Dissipation (4)	P _D	830	mW
Pin Soldering Temperature ⁽⁵⁾	T _{SOLDER}	260	°C

Notes

- 1. $T_A = 25$ °C. 10 ms pulse at 200 ms intervals.
- 2. ESD1 testing is performed in accordance with the Human Body Model (C_{ZAP} = 100 pF, R_{ZAP} = 1500 Ω), ESD2 testing is performed in accordance with the Machine Model (C_{ZAP} = 200 pF, R_{ZAP} = 0 Ω).
- 3. Mounted on 37 mm x 50 mm x 1.6 mm glass epoxy board mount.
- 4. $T_A = 25^{\circ}C$.
- 5. Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause malfunction or permanent damage to the device.

STATIC ELECTRICAL CHARACTERISTICS

Table 3. Static Electrical Characteristics

Characteristics noted under conditions $T_A = 25^{\circ}C$, $V_{DD} = V_M = 5.0 \text{ V}$, GND = 0 V unless otherwise noted. Typical values noted reflect the approximate parameter means at $T_A = 25^{\circ}C$ under nominal conditions unless otherwise noted.

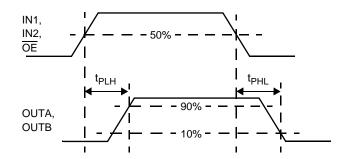
Characteristic	Symbol	Min	Тур	Max	Unit	
POWER						
Motor Supply Voltage	V_{M}	2.0	5.0	6.8	V	
Logic Supply Voltage	V _{DD}	2.7	5.0	5.7	V	
Quiescent Power Supply Current					μΑ	
Driver Circuit Power Supply Current	$^{I}Q_{M}$	_	_	1.0		
Logic Supply Current (6)	$I_{Q_{VDD}}$	_	_	20		
Gate Driver Circuit Power Supply Current	$I_{Q_{VG}}$	_	-	150		
Operating Power Supply Current	1				mA	
Logic Supply Current (7)	I _{V_{DD}}	_	_	3.0		
Gate Driver Circuit Power Supply Current (8)	I_{V_G}	-	-	0.7		
Low V _{DD} Detection Voltage ⁽⁹⁾	V _{DD} DET	1.5	2.0	2.5	V	
Driver Output ON Resistance					Ω	
Source+Sink at I _O = 0.7 A ⁽¹⁰⁾	R _{DS(ON)}	-	0.8	1.2		
$V_G = 9.5 \text{ V}, V_M = 5.0 \text{ V}, T_A = 25^{\circ}C^{(11)}$	R _{DS(ON)2}	-	-	1.5		
GATE DRIVE	1	'	l		I	
Gate Drive Circuit Power Supply Voltage	V _G	12	13	13.5	V	
CONTROL LOGIC						
Logic Input Voltage	V _{IN}	0	_	V_{DD}	V	
Logic Inputs (2.7 V < V _{DD} < 5.7 V)						
High-Level Input Voltage	V _{IH}	V _{DD} x 0.7	_	_	V	
Low-Level Input Voltage	V_{IL}	_	-	V _{DD} x 0.3	V	
High-Level Input Current	I _{IH}	_	_	1.0	μΑ	
Low-Level Input Current	I _{IL}	-1.0	_	_	μΑ	
OE Pin Input Current Low	I _{IL} -OE	-	50	100	μΑ	

Notes

- 6. IQ_{VDD} includes the current to predriver circuit.
- 7. $I_{V_{DD}}$ includes the current to predriver circuit at f_{IN} = 100 kHz.
- 8. At $f_{IN} = 20 \text{ kHz}$.
- 9. Detection voltage is defined as when the output becomes high-impedance after V_{DD} drops below the detection threshold. When gate voltage V_G is applied from an external source, $V_G = 7.5 \text{ V}$.
- 10. The total H-Bridge ON resistance when VG is 13V.
- 11. Increased RDS(ON) value as the result of a reduced VG value of 9.5 V.

DYNAMIC ELECTRICAL CHARACTERISTICS

Table 4. Dynamic Electrical Characteristics


Characteristics noted under conditions $T_A = 25^{\circ}C$, $V_{DD} = V_M = 5.0$ V, GND = 0 V unless otherwise noted.

Characteristic		Symbol	Min	Тур	Max	Unit
INPUT	1					
Pulse Input Frequency		f _{IN}	_	-	200	kHz
Input Pulse Rise Time (12)		t _R	_	-	1.0 (13)	μs
Input Pulse Fall Time (14)		t _F	_	-	1.0 (13)	μs
OUTPUT	1					
Propagation Delay Time (15)						μs
Turn-ON Time		t_{PLH}	_	0.1	0.5	
Turn-OFF Time		t_{PHL}	-	0.1	0.5	
Low-Voltage Detection Time ⁽¹⁶⁾		^t V _{DD} DET	_	-	10	ms

Notes

- 12. Time is defined between 10% and 90%.
- 13. That is, the input waveform slope must be steeper than this.
- 14. Time is defined between 90% and 10%.
- 15. Load of Output is 8.0 Ω resistance. see figure 4
- 16. See figure 5.

TIMING DIAGRAMS

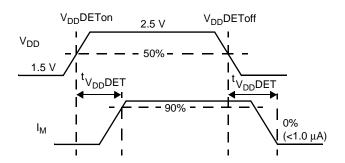


Figure 4. t_{PLH}, t_{PHL}, and t_{PZH} Timing

Figure 5. Low-Voltage Detection Timing Diagram

Table 5. Truth Table

INPUT			ТИО	PUT
ŌĒ	IN1A IN2A	IN1B IN2B	OUT1A OUT2A	OUT1B OUT2B
L	L	L	L	L
L	Н	L	Н	L
L	L	Н	L	Н
L	Н	Н	Z	Z
Н	X	Х	Z	Z

H = High.

L = Low.

Z = High impedance.

X = Don't care.

 $[\]overline{\text{OE}}$ pin is pulled up to V_{DD} with internal resistance.

FUNCTIONAL DESCRIPTION

INTRODUCTION

The 17533 is a monolithic dual H-Bridge ideal for portable electronic applications to control bipolar stepper motors and brush DC motors such as those found in camera len assemblies, camera shutters, optical disk drives, etc.

The 17533 operates from 2.0 V to 6.8 V, with independent control of each H-Bridge via parallel MCU interface (3.0 V-and 5.0 V-compatible I/O). The device features built-in shoot-through current protection and undervoltage shutdown.

The 17533 has four operating modes: Forward, Reverse, Brake, and Tri-Stated (High Impedance). The MOSFETs comprising the output bridge have a total source + sink $R_{DS(ON)} \leq$ 1.2 $\Omega.$

The 17533 can simultaneously drive two brush DC motors or, as shown in the simplified application diagram on page 1, one bipolar stepper motor. The drivers are designed to be PWM'ed at frequencies up to 200 kHz.

FUNCTIONAL PIN DESCRIPTION

LOGIC SUPPLY (VDD)

The VDD pin carries the logic supply voltage and current into the logic sections of the IC. VDD has an undervoltage threshold. If the supply voltage drops below the undervoltage threshold, the output power stage switches to a tri-state condition. When the supply voltage returns to a level that is above the threshold, the power stage automatically resumes normal operation according to the established condition of the input control pins.

LOGIC INPUT CONTROL (IN1A, IN1B, IN2A, AND IN2B)

These logic input pins control each H-Bridge output (e.g., IN1A logic HIGH = OUT1A HIGH, etc.). However, if all inputs are taken HIGH, the outputs bridges are both tri-stated (refer to Table 5, Truth Table, page 7).

OUTPUT ENABLE (OE)

The $\overline{\text{OE}}$ pin is a LOW = TRUE enable input. When $\overline{\text{OE}}$ = HIGH, all H-Bridge outputs (OUT1A, OUT1B, OUT2A, and OUT2B) are tri-stated (high-impedance), regardless of logic inputs (IN1A, IN1B, IN2A, and IN2B) states.

OUTPUT A AND B OF H-BRIDGE CHANNEL 1 AND 2 (OUT1A, OUT1B, OUT2A, AND OUT2B)

These pins provide connection to the outputs of each of the internal H-Bridges (see <u>Figure 2, 17533 Simplified</u> <u>Internal Block Diagram</u>, page <u>2</u>).

MOTOR DRIVE POWER SUPPLY (VM1 AND VM2)

The VM pins carry the main supply voltage and current into the power sections of the IC. This supply then becomes controlled and/or modulated by the IC as it delivers the power to the loads attached between the output pins. All VM pins must be connected together on the printed circuit board.

GATE DRIVER CIRCUIT VOLTAGE INPUT (VG)

The VG pin is the input pin for the gate drive voltage.

POWER GROUND (PGND)

Power ground pins. They must be tied together on the PCB.

LOGIC GROUND (LGND)

Logic ground pin.

TYPICAL APPLICATIONS

INTRODUCTION

Figure 6 shows a typical application for the 17533. When applying the gate voltage to the VG pin from an external source, be sure to connect it via a resistor equal to, or greater than, $R_G = V_G/0.02~\Omega$.

Care must be taken to provide sufficient gate-source voltage for the high-side MOSFETs when $V_M >> V_{DD}$ (e.g., $V_M = 5.0 \text{ V}$, $V_{DD} = 3.0 \text{ V}$), in order to ensure full enhancement of the high-side MOSFET channels.

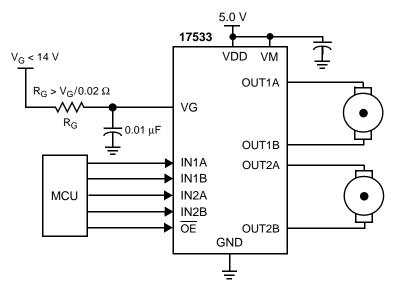


Figure 6. 17533 Typical Application Diagram

CEMF SNUBBING TECHNIQUES

Care must be taken to protect the IC from potentially damaging CEMF spikes induced when commuting currents in inductive loads. Typical practice is to provide snubbing of voltage transients by placing a zener or a capacitor at the supply pin (VM) (see Figure 7).

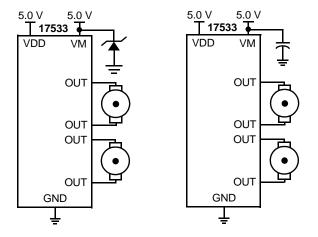
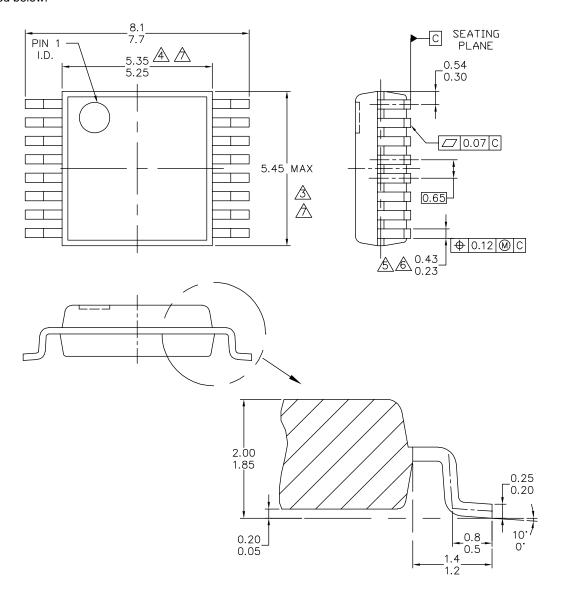


Figure 7. CEMF Snubbing Techniques


PCB LAYOUT

When designing the printed circuit board (PCB), connect sufficient capacitance between power supply and ground pins to ensure proper filtering from transients. For all high-current paths, use wide copper traces and shortest possible distances.

PACKAGING

PACKAGE DIMENSIONS

Important: For the most current revision of the package, visit <u>www.freescale.com</u> and perform a keyword search on the 98A number listed below.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.		L OUTLINE	PRINT VERSION NO	TO SCALE
TITLE: 16LD VMFP, 5.30 X 5.45 PKG		DOCUMENT NO	98ASA10614D	REV: B
0.65 PITCH	CASE NUMBER	1563-01	27 MAY 2005	
CASE OUTLINE		STANDARD: NO	N-JEDEC	

EV (Pb-FREE) SUFFIX

16-LEAD VMFP PLASTIC PACKAGE 98ASA10614D ISSUE B

REVISION HISTORY

REVISION	DATE	DESCRIPTION OF CHANGES
2.0	5/2006	Converted to Freescale format
		Added Revision History page
3.0	7/2006	Updated to the prevailing form and style
		Corrected device isometric drawing on page 1
		Added RoHS compliance

How to Reach Us:

Home Page:

www.freescale.com

support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH

Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. **Technical Information Center** 2 Dai King Street
Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc., 2006. All rights reserved.

