Preferred Device

Triacs

Silicon Bidirectional Thyristors

Designed primarily for full-wave ac control applications, such as light dimmers, motor controls, heating controls and power supplies; or wherever full-wave silicon gate controlled solid-state devices are needed. Triac type thyristors switch from a blocking to a conducting state for either polarity of applied main terminal voltage with positive or negative gate triggering.

Features

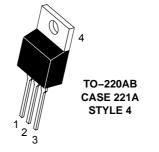
- Blocking Voltage to 800 V
- All Diffused and Glass Passivated Junctions for Greater Parameter Uniformity and Stability
- Small, Rugged, Thermowatt Construction for Low Thermal Resistance, High Heat Dissipation and Durability
- Gate Triggering Guaranteed in all Four Quadrants
- For 400 Hz Operation, Consult Factory
- Pb-Free Package is Available

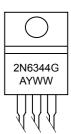
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
†Peak Repetitive Off–State Voltage (Note 1) ($T_J = -40 \text{ to } +110^{\circ}\text{C}$, Sine Wave 50 to 60 Hz, Gate Open) 2N6344 2N6349	V _{DRM,} V _{RRM}	600 800	٧
†On-State RMS Current ($T_C = +80^{\circ}C$) Full Cycle Sine Wave 50 to 60 Hz ($T_C = +90^{\circ}C$)	I _{T(RMS)}	8.0 4.0	Α
†Peak Non-Repetitive Surge Current (One Full Cycle, Sine Wave 60 Hz, T _C = +25°C) Preceded and followed by rated current	I _{TSM}	100	Α
Circuit Fusing Consideration (t = 8.3 ms)	I ² t	40	A ² s
†Peak Gate Power (T _C = +80°C, Pulse Width = 2 μs)	P _{GM}	20	W
†Average Gate Power (T _C = +80°C, t = 8.3 ms)	P _{G(AV)}	0.5	W
†Peak Gate Current (T _C = +80°C, Pulse Width = 2.0 μs)	I _{GM}	2.0	Α
†Peak Gate Voltage (T _C = +80°C, Pulse Width = 2.0 μs)	V_{GM}	10	V
†Operating Junction Temperature Range	T_{J}	-40 to +125	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. †Indicates JEDEC Registered Data.

 V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.


Expertise Applied | Answers Delivered


Littelfuse.com

TRIACS 8 AMPERES RMS 600 thru 800 VOLTS

MARKING DIAGRAM

A = Assembly Location
Y = Year
WW = Work Week
G = Pb-Free Package

PIN ASSIGNMENT

1	Main Terminal 1		
2	Main Terminal 2		
3	Gate		
4	4 Main Terminal 2		

ORDERING INFORMATION

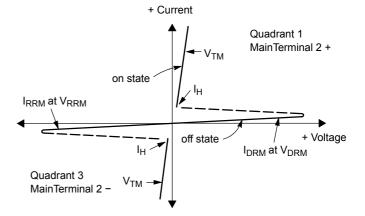
Device	Package	Shipping
2N6344	TO-220AB	500 Units / Box
2N6344G	TO-220AB (Pb-Free)	500 Units / Box

Preferred devices are recommended choices for future use and best overall value.

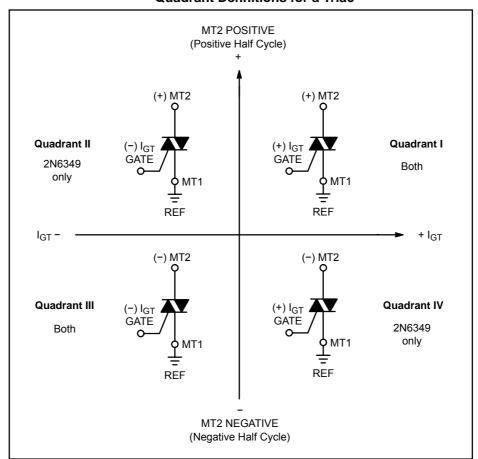
2N6344

THERMAL CHARACTERISTICS

Characteristic		Max	Unit
†Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	2.2	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Sec	TL	260	°C


ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted; Electricals apply in both directions)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•					
†Peak Repetitive Blocking Current (V _D = Rated V _{DRM} , V _{RRM} ; Gate Open)	T _J = 25°C T _J = 100°C	I _{DRM} , I _{RRM}		_ _	10 2.0	μA mA
ON CHARACTERISTICS						
†Peak On-State Voltage (I _{TM} = ±11 A Peak; Pulse Width = 1 to 2 ms, Duty Cycle ≤2%)		V_{TM}	_	1.3	1.55	V
Gate Trigger Current (Continuous dc) (V_D = 12 Vdc, R_L = 100 Ω) Quadrant I: MT2(+), G(+) Quadrant II: MT2(+), G(-) Quadrant III: MT2(-), G(-) Quadrant IV: MT2(-), G(+) +MT2(+), G(+); MT2(-), G(-) T_C = -40°C +MT2(+), G(-); MT2(-), G(+) T_C = -40°C	Both 2N6349 only Both 2N6349 only	Іст	- - - -	12 12 20 35 -	50 75 50 75 100 125	mA
Gate Trigger Voltage (Continuous dc) (V_D = 12 Vdc, R_L = 100 Ω) Quadrant I: MT2(+), G(+) Quadrant II: MT2(+), G(-) Quadrant III: MT2(-), G(-) Quadrant IV: MT2(-), G(+) †MT2(+), G(+); MT2(-), G(-) T_C = -40°C †MT2(+), G(-); MT2(-), G(+) T_C = -40°C	Both 2N6349 only Both 2N6349 only	V _{GT}		0.9 0.9 1.1 1.4 -	2.0 2.5 2.0 2.5 2.5 3.0	V
Gate Non–Trigger Voltage (Continuous dc) (V _D = Rated V _{DRM} , R _L = 10 k Ω , T _J = 100°C) †MT2(+), G(+); MT2(-), G(-); MT2(+), G(-); MT2(-), G(-)		V _{GD}	0.2	_	_	V
†Holding Current (V_D = 12 Vdc, Gate Open) (Initiating Current = \pm 200 mA)	$T_C = 25^{\circ}C$ * $T_C = -40^{\circ}C$	I _H	-	6.0	40 75	mA
†Turn-On Time (V_D = Rated V_{DRM} , I_{TM} = 11 A, I_{GT} = 120 mA, Rise Time = 0.1 μ s, Pulse V	Vidth = 2 μs)	t _{gt}	-	1.5	2.0	μS
DYNAMIC CHARACTERISTICS	'		•			
Critical Rate of Rise of Commutation Voltage (V_D = Rated V_{DRM} , I_{TM} = 11 A, Commutating di/dt = 4.0 A/ms, Gate Unene	rgized, T _C = 80°C)	dv/dt(c)	-	5.0	-	V/μs


[†]Indicates JEDEC Registered Data.

Voltage Current Characteristic of Triacs (Bidirectional Device)

Symbol	Parameter
V _{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V_{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
I _H	Holding Current

Quadrant Definitions for a Triac

All polarities are referenced to MT1.

With in-phase signals (using standard AC lines) quadrants I and III are used.

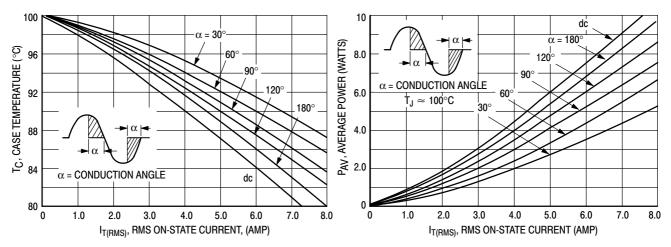
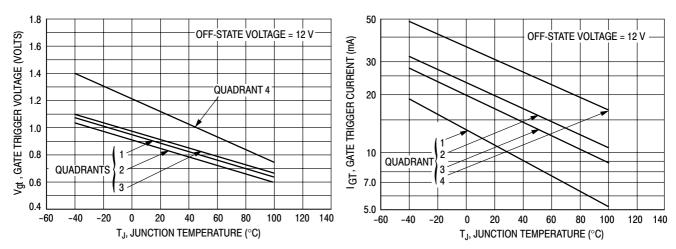



Figure 1. RMS Current Derating

Figure 2. On-State Power Dissipation

4

Figure 3. Typical Gate Trigger Voltage

Figure 4. Typical Gate Trigger Current

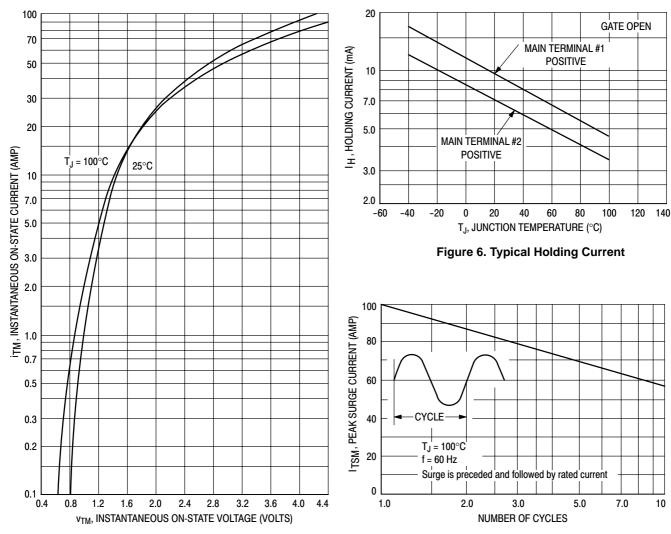
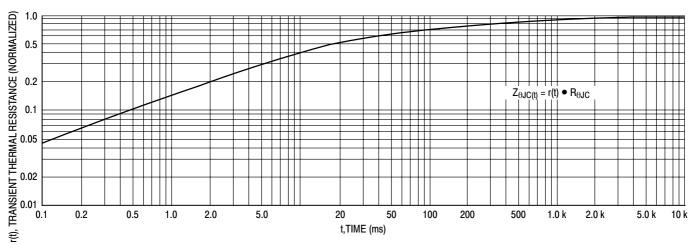
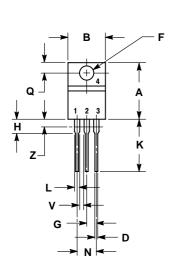
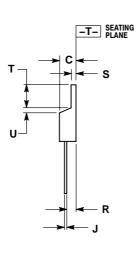


Figure 5. On-State Characteristics

Figure 7. Maximum Non-Repetitive **Surge Current**




Figure 8. Typical Thermal Response


10

2N6344

PACKAGE DIMENSIONS

TO-220AB CASE 221A-07 ISSUE AA

NOTES

- DIMENSIONING AND TOLERANCING PER ANSI
 YAA FM 1000
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
С	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
Н	0.110	0.155	2.80	3.93
J	0.014	0.022	0.36	0.55
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
٧	0.045		1.15	
Z		0.080		2 04

STYLE 4:

- PIN 1. MAIN TERMINAL 1
 - 2. MAIN TERMINAL 2
 - 3. GATE
 - 4. MAIN TERMINAL 2

Littelfuse products are not designed for, and shall not be used for, any purpose (including, without limitation, automotive, military, aerospace, medical, life-saving, life-sustaining or nuclear facility applications, devices intended for surgical implant into the body, or any other application in which the failure or lack of desired operation of the product may result in personal injury, death, or property damage) other than those expressly set forth in applicable Littelfuse product documentation. Warranties granted by Littelfuse shall be deemed void for products used for any purpose not expressly set forth in applicable Littelfuse documentation. Littelfuse shall not be liable for any claims or damages arising out of products used in applications not expressly intended by Littelfuse as set forth in applicable Littelfuse documentation. The sale and use of Littelfuse products is subject to Littelfuse Terms and Conditions of Sale, unless otherwise agreed by Littelfuse.

Littelfuse.com