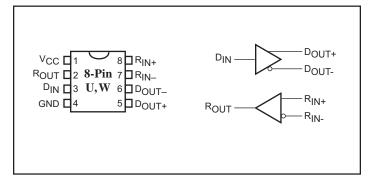


3.3V LVDS High-Speed Differential Line Driver and Receiver

Features

- Signaling Rates >660 Mbps (330 MHz)
- Single 3.3V Power Supply Design
- Driver:
 - ±350mV Differential Swing into a 100-ohm load
 - Propogation Delay of 1.5ns Typ.
 - Low Voltage TTL (LVTTL) Inputs are 5V Tolerant
- · Receiver:
 - Accepts ±50mV (min.) Differential Swing with up to 2.0V ground potential difference
 - Propagation Delay of 3.3ns Typ.
 - Low Voltage TTL (LVTTL) Outputs
 - Open, Short, and Terminated Fail Safe
- Industrial Temperature Operating Range: -40°C to 85°C
- Meets or Exceeds IEEE 1596.3 SCI Standard
- Meets or Exceeds ANSI/TIA/EIA-644 LVDS Standard
- Bus-Terminal ESD exceeds 12kV
- Packaging (Pb-free & Green available):
 - 8-pin SOIC or MSOP

Description


The PI90LV179 is a differential line driver and receiver (transceiver) that is compliant with the IEEE 1596.3 SCI and ANSI/TIA/EIA-644 LVDS standards. This device uses low-voltage differential signaling (LVDS) to achieve data rates in excess of 660 Mbps while being less susceptible to noise than single-ended transmission.

The driver translates a low-voltage TTL/CMOS input into a low-voltage (350mV typical) differential output signal. The receiver translates a differential 350mV input signal to a 3V CMOS output level.

Applications

Applications include point-to-point and multidrop baseband data transmission over a controlled impedance media of approximately 100 ohms. These include intra-system connections via printed circuit board traces or cables, hubs and routers for data communications; PBXs, switches, repeaters and base stations for telecommunications and other applications such as digital cameras, printers and copiers.

PI90LV179

08-0295 1 PS8539E 11/11/08

Function Tables

PI90LV179 Receiver

Inputs	Output
$V_{ID} = V_{RIN+} - V_{RIN-}$	R _{OUT}
V _{ID} ≥ 50mV	Н
$-50 \text{mV} < \text{V}_{\text{ID}} < 50 \text{mV}$?
$V_{ID} \le -50 \text{mV}$	L
open	Н

PI90LV179 Driver

Input	Output		
D _{IN}	D _{OUT+}	D _{OUT}	
L	L	Н	
Н	Н	L	
open	L	Н	

Notes:

H = High Level, L = Low Level, ? = Indeterminate,Z = High-Impedance, X = Don't Care

Pin Descriptions

Name	Description
D _{IN}	TTL/CMOS driver input pins
Dour+	Non-inverting driver output pins
Dout+ Inverting driver output pins	
Rout	TTL/CMOS receiver output pins
R _{IN} +	Non-inverting receiver input pins
R _{IN} _	Inverting receiver input pins
V _{ID}	Input Differential Signal Voltage
GND	Ground pin
V _{CC}	Positive power supply pin, +3.3V ±10%

Absolute Maximum Ratings

Supply Voltage (V _{CC})0.5V to +4.0V
Driver
Input Voltage (D_{IN}) $-0.3V$ to ($Vcc+0.3V$)
Output Voltage (D _{OUT+} , D _{OUT-})0.3V to +3.9V
Short Circuit Duration (D _{OUT+} , D _{OUT-}) Continuous
Receiver
Input Voltage (R_{IN+} , R_{IN-}) $-0.3V$ to $+3.9V$)
Output Voltage (R_{OUT})0.3V to (V_{CC} +0.3V)
Storage Temperature Range65°C to +150°C
Lead Temperature Range Soldering (4s)+260°C
Maximum Junction Temperature+150°C
ESD Rating>12kV

Recommended Operating Conditions

•	Min.	Тур.	Max.	Units
Supply Voltage (V _{CC})	3	3.3	3.6	V
High Level Input Voltage, V _{IH}	2			
Low Level Input Voltage, V _{IL}			0.8	
Magnitude of Differential Input Voltage $V_{\rm ID}$	0.1		0.6	
Common-mode Input Voltage, V _{IC} (Fig 5)	V _{ID} /2		2.4 - V _{ID} /2	
			V _{CC} -0.8	
Operating Free Air Temperature T _A	-40		85	°C

PI90LV179 3.3V LVDS High-Speed Differential Line Drivers and Receivers

Electrical Characteristics (Over recommended operating conditions unless otherwise noted).

Parameter	Test Condition		Тур.†	Max.	Units
I _{CC} * Supply Current	No receiver load, Driver $R_L = 100$ ohms		8.0	10.8	mA

[†]All typical values are at 25°C with a 3.3V supply

Electrical Characteristics (Over recommended operating conditions unless otherwise noted).

	Parameter	Test Conditions	Min.	Тур.	Max.	Units	
V _{OD}	Differential output voltage magnitude		$R_{\rm L} = 100 \text{ ohms}$	247	390	470	
ΔV _{OD} I	Change in differential output voltage magnitude between logic states		See Figures 1 and 2	-50		50	mV
V _{OC(SS)}	Steady-state common-mode output voltage			1.125	1.25	1.375	V
$\Delta V_{OC(SS)}$	Change in steady-state common-mode output voltage		See Figure 3	-50		50	mV
V _{OC(PP)} Peak-to-peak common-mode output voltage					50	150	
I_{IH}	High-level input current	D _{IN}	$V_{IH} = 5V$		2	20	
${ m I}_{ m IL}$	Low-level input current	D _{IN}	$V_{IL} = 0.8V$		2	10	μА
ī	Chart aircuit autrust aurrant	•	V_{OY} or $V_{OZ} = 0V$		-6	-9	A
I_{OS}	Short-circuit output current		$V_{OD} = 0V$		-8	-11	mA
т	High immediance output compart		$V_{\rm OD} = 600 \text{mV}$			±1	
I _{OZ} High-impedance output current		V _O - 0V or V _{CC}			±1	μА	
I _{O(OFF)} Power-off output current		$V_{CC} = 0V, V_{O} = 3.6V$			±1		
C _{IN}	Input capacitance				7		pF

^{*} I_{CC} measured with all TTL input. $V_{IN} = V_{CC}$ or GND.

Receiver Electrical Characteristics (Over recommended operating conditions unless otherwise noted).

Parameter		Test Conditions	Min.	Тур.	Max.	Units
V _{ITH+}	Positive-going differential input voltage threshold	Car Firms 5 0 Table 1			50	
V _{ITH} _	Negative-going differential input voltage threshold	See Figures 5 & Table 1	-50			mV
V _{OH}	High-level output voltage	$I_{OH} = -8mA$	2.4			V
V _{OL}	Low-level output voltage	$I_{OL} = 8mA$			0.4	V
т	Lucat consent (D. 1900)	$V_{\rm I} = 0$	-2	-11	-20	
$\mid m I_{ m I} \mid$	Input current (R _{IN+} or R _{IN-})	$V_I = 2.4V$	-1.2	-3		
I _{I (OFF)}	Power-off input current (R _{IN+} or R _{IN-})	$V_{CC} = 0$			±20	
I _H	High-level input current (enables)	$V_{IH} = 2V$			±10	μA
I_{L}	Low-level input current (enables)	$V_{IL} = 0.8V$			±10	
I_{OZ}	High-impedance output current	$V_{\rm O} = 0$ or 5V			±10	
C _I	Input capacitance			5		pF

[†]All typical values are at 25°C with a 3.3V supply

Driver Switching Characteristics (Over recommended operating conditions unless otherwise noted).

	Parameter	Test Conditions	Min.	Typ. [†]	Max.	Units
t _{PLH}	Propagation delay time, low-to-high-level output			1.9	2.5	
t _{PHL}	Propagation delay time, high-to-low-level output			1.9	2.5	ns
t _r	Differential output signal rise time	$\begin{bmatrix} R_L = 100 \text{ ohms} \\ C_L = 10 \text{pF} \end{bmatrix}$		0.6	1.1	
t_{f}	Differential output signal fall time	See Figure 2		0.6	1.1	
t _{sk(p)}	Pulse skew (t _{PHL} - t _{PLH})			270		ps
t _{sk(pp)}	Part-part skew**				0.9	
t _{PZH}	Propagation delay time, high-impedance-to-high-level output			2.7	4	
t_{PZL}	Propagation delay time, high-impedance-to-low-level output	See Figure 7		1.8	4	ns
t_{PHZ}			3.0	4		
$t_{\mathrm{PL}Z}$	Propagation delay time, low-level-to-high-impedance output			3.0	4	

[†] All typical values are at 25°C with a 3.3V supply.

08-0295 4 PS8539E 11/11/08

^{**} t_{sk(pp)}: magnitude of difference in propagation delay times between any specific terminals of two devices (all things being equal).

Receiver Switching Characteristics (Over recommended operating conditions unless otherwise noted).

Parameter		Test Conditions	Min.	Typ. [†]	Max.	Units
t _{PLH}	Propagation delay time, low-to-high-level output			2.0	3.1	
t _{PHL}	Propagation delay time, lhigh-to-low-level output			2.2	3.1	ns
t _{sk(pp)**}	Part-part skew**	$C_L = 10 pF$			1.3	
t _{sk(p)}	Pulse skew (t _{PHL} – t _{PLH}) See Figure 6			300	500	ps
t_{r}	Output signal rise time			0.9	1.5	
t_{f}	Output signal fall time			1.0	1.8	
t _{PZH}	Propagation delay time, high-level-to-high-impedance output			1.5	3.1	ns
t_{PZL}	Propagation delay time, low-level-to-low-impedance output	Sac Figure 7		4.0	6.0	
t _{PHZ}	Propagation delay time, high-impedance-to-high-level output	gation delay time, high-impedance-to-high-level output See Figure 7		2.5	3.5	
t_{PLZ}	Propagation delay time, low-impedance-to-high-level output			6.0	7.6	

[†]All typical values are at 25°C with a 3.3V supply

Parameter Measurement Information

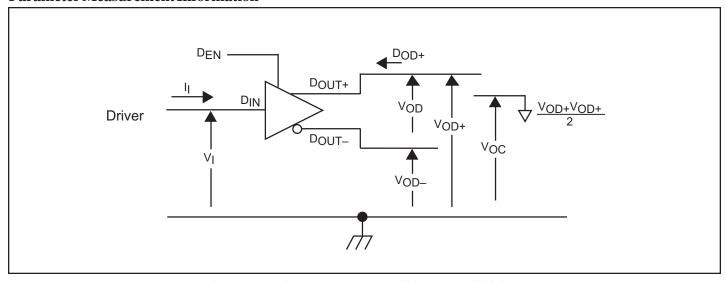


Figure 1. Driver Voltage and Current Definitions

^{**}t_{sk(pp)}: magnitude of difference in propagation delay times between any specific terminals of two devices (all things being equal)

Parameter Measurement Information

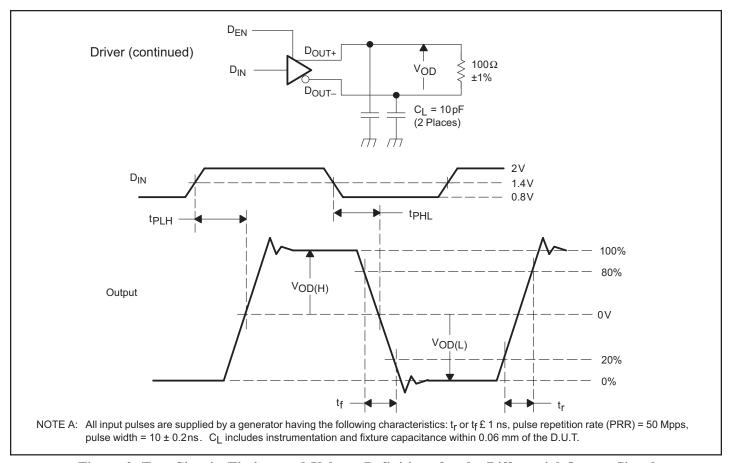


Figure 2. Test Circuit, Timing, and Voltage Definitions for the Differential Output Signal

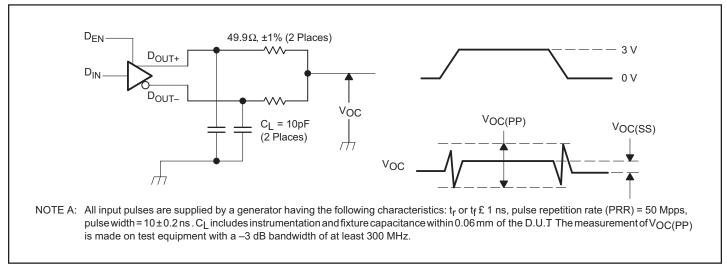


Figure 3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage

08-0295 6 PS8539E 11/11/08

Parameter Measurement Information (continued)

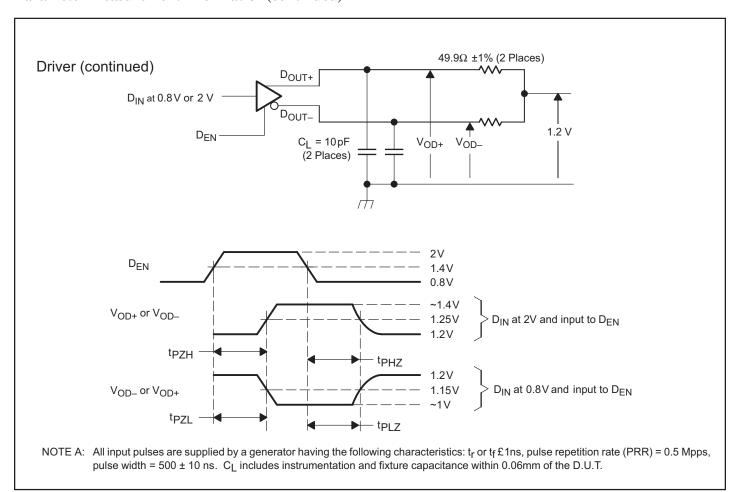


Figure 4. Enable and Disable Timing Circuit and Definitions

08-0295 7 PS8539E 11/11/08

Parameter Measurement Information (continued)

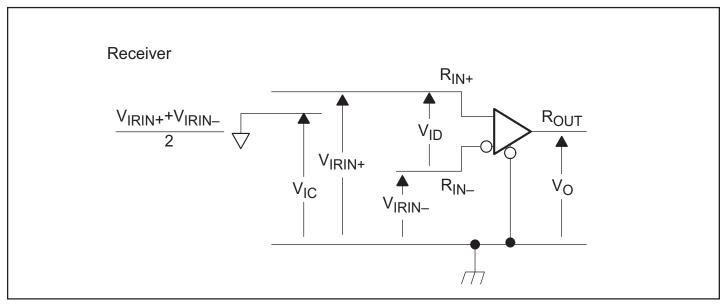


Figure 5. Receiver Voltage Definitions

Table 1. Receiver Minimum and Maximum Input Threshold Test Voltages

	/OLTAGES /)	RESULTING DIFFERENTIAL INPUT VOLTAGE (mV)	RESULTING COMMON- MODE INPUT VOLTAGE (V)
V _{IRIN+}	V _{IRIN+}	V _{ID}	V _{IC}
1.225	1.175	50	1.2
1.175	1.225	– 50	1.2
2.375	2.325	50	2.35
2.325	2.375	– 50	2.35
0.1	0	50	0.05
0	0.05	– 50	0.05
1.5	0.9	600	1.2
0.9	1.5	-600	1.2
2.4	1.8	600	2.1
1.8	2.4	-600	2.1
0.6	0	600	0.3
0	0.6	-600	0.3

08-0295 8 PS8539E 11/11/08

Parameter Measurement Information (continued)

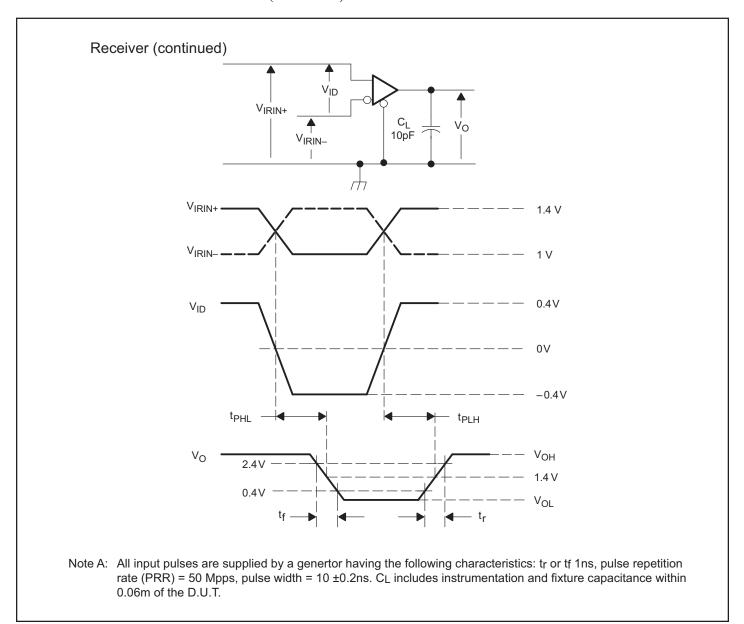


Figure 6. Timing Test Circuit and Waveforms

08-0295 9 PS8539E 11/11/08

Parameter Measurement Information

Receiver (continued) 1.2 V R_{IN-} Sou Ω TEST NOTE A: All input pulses are supplied by a genertor having the following characteristics: t_r or t_f 1ns, pulse repetition rate (PRR) = 0.5 Mpps, pulse wide = 500 ±10ns. CL includes instrumentation and fixture capacitance within 0.06m of the D.U.T.

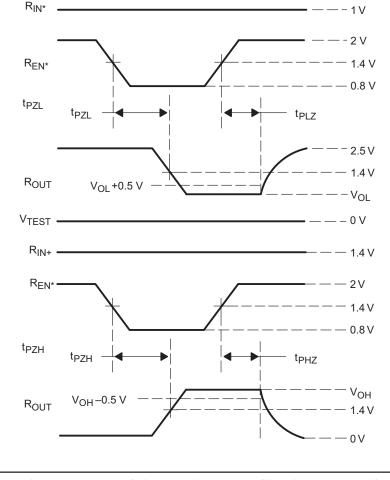
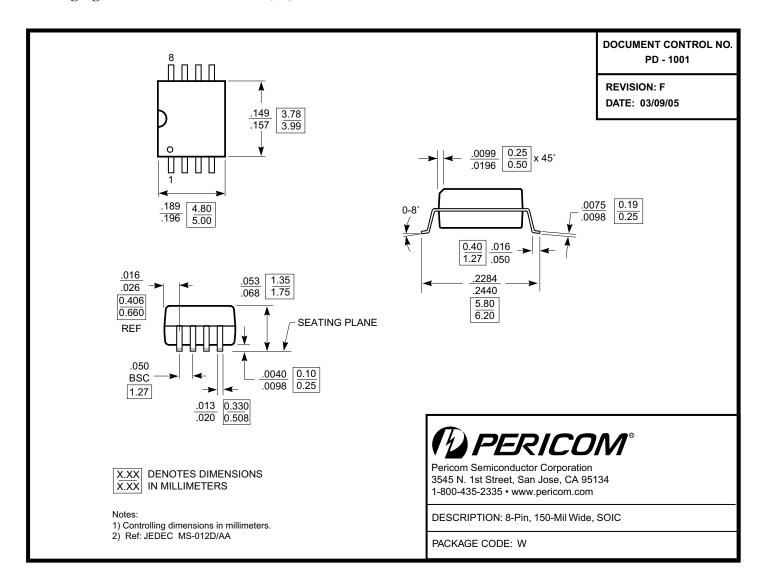



Figure 7. Enable/Disable Time Test Circuit and Waveforms

08-0295 1 0 PS8539E 11/11/08

Packaging Mechanical: 8-Pin SOIC (W)

08-0295 11 PS8539E 11/11/08

Packaging Mechanical: 8-Pin MSOP (U)

Ordering Information

Ordering Code	Package Code	Package Description
PI90LV179UE	U	Pb-free & Green, 8-pin MSOP
PI90LV179WE	W	Pb-free & Green, 8-pin SOIC

Note:

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/